
Computing Iceberg Queries E�ciently�

Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, Je�rey D. Ullman

Department of Computer Science, Stanford, CA 94305.

ffangmin, shiva, hector, rajeev, ullmang@cs.stanford.edu

Paper Number 234

Abstract

Many applications compute aggregate functions (such as COUNT, SUM) over an attribute

(or set of attributes) to �nd aggregate values above some speci�ed threshold. We call such

queries iceberg queries because the number of above-threshold results is often very small (the

tip of an iceberg), relative to the large amount of input data (the iceberg). Such iceberg queries

are common in many applications, including data warehousing, information-retrieval, market

basket analysis in data mining, clustering and copy detection. We propose e�cient algorithms

to evaluate iceberg queries using very little memory and signi�cantly fewer passes over data,

as compared to current techniques that use sorting or hashing. We present an experimental

case study using over three gigabytes of Web data to illustrate the savings obtained by our

algorithms.

1 Introduction

In this paper we develop e�cient execution strategies for an important class of queries that we

call iceberg queries. An iceberg query performs an aggregate function over an attribute (or set

of attributes) and then eliminates aggregate values that are below some speci�ed threshold. The

prototypical iceberg query we consider in this paper is as follows, based on a relation R(target1,

target2,: : : ; targetk, rest) and a threshold T .

SELECT target1, target2, ..., targetk, count(rest)

FROM R

GROUP BY target1, target2, ..., targetk

HAVING count(rest) >= T

If we apply the following iceberg query on relation R in Table 1, with T = 3 (and k = 2),

the result would be the tuple ha; e; 3i. We call these iceberg queries because relation R and the

number of unique target values are typically huge (the iceberg), and the answer, i.e., the number

of frequently occurring targets, is very small (the tip of the iceberg).

Many data mining queries are fundamentally iceberg queries. For instance, market analysts

execute market basket queries on large data warehouses that store customer sales transactions.

These queries identify user buying patterns, by �nding item pairs (and triples) that are bought

together by many customers [1, 3, 4]. (Target sets are item-pairs, and T is the minimum number of

transactions required to support the item pair.) Since these queries operate on very large datasets,

�Phone Number: (650) 723-3605, FAX: (650) 725-2588

1

target1 target2 rest

a e joe

b f fred

a e sally

b d sally

a e bob

c f tom

Table 1: Example relation R.

solving such iceberg queries e�ciently is an important problem. In fact, Park et al. claim that the

time to execute the above query dominates the cost of producing interesting association rules [16].

In this paper, we concentrate on executing such iceberg queries e�ciently using compact in-memory

data structures. (We discuss more examples of iceberg queries in Section 2.)

The simplest way to answer an iceberg query is to maintain an array of counters in main memory,

one counter for each unique target set, so we can answer the query in a single pass over the data.

However as we have already indicated, this is not possible in our applications since relation R is

usually several times larger than the available memory (even if irrelevant attributes are projected

out as early as possible). Another approach to answer an iceberg query is to sort R on disk, then

do a pass over it aggregating and selecting the targets above the threshold. If the available memory

is small relative to the size of R, the sorting can take many passes over the data on disk. For

instance, if we use merge-sorting, we produce jRj=M sorted runs, where M is the number of tuples

that �t in memory. Then we need logM jRj=M merge passes to produce the �nal sorted run. For

each of these passes we need to read and write the entire relation R (or at least all the values for

the target attribute). We encounter similar problems if we use other popular techniques such as

early aggregation [2], or hashing based aggregation.

Until now, we have assumed R is materialized. However, in many cases R may be too large to

be explicitly materialized even on disk. For instance, in the market basket application, the input

data is often not R itself, but a set of transaction records. Each such record describes a collection

of items bought by a customer, and corresponds to multiple R records. For example, say we are

interested in pairs of items that are frequently bought together in a store, and say a customer

bought items fa; b; cg. Then R would contain tuples [a; b], [a; c], [b; c], representing each association

between pairs of items. In general, if the average number of items a customer buys is n, then each

customer record generates C(n; 2) � n2

2
tuples in R. We can see that even if the initial data with

customer transactions is small1, materializing R may not be feasible due to the quadratic increase

in size over the initial input. The situation may get worse when the analyst wants to �nd popular

item triples and quadruples. Thus, when R is very large, it will be useful to execute the iceberg

query over the virtual relation R without explicitly materializing R, as traditional techniques based

1In many cases, input data for WalMart-like stores however runs into hundreds of gigabytes.

2

on sorting or hashing would require.

The primary contributions of this paper are three-fold:

1. We identify iceberg queries as fundamental data mining queries, and discuss applications

where icebergs appear either directly, or as sub-queries in more complex queries. Iceberg

queries are today being processed with techniques that do not scale well to large data sets,

so it is crucial to develop better techniques.

2. We propose a variety of novel algorithms for iceberg query processing. Our algorithms use

as building blocks well-known techniques such as sampling and multiple hash functions, but

combine them and extend them to improve performance and reduce memory requirements.

Our techniques avoid sorting or hashing R, by keeping compact, in-memory structures that

allow them to identify the above threshold targets. In cases where R is not materialized,

we show how to perform the iceberg computation without materializing R. Some iceberg

algorithms may produce errors, i.e., target values above threshold not reported in the answer,

or targets reported that are not above threshold. These algorithms are more e�cient, and may

have errors tolerable to some application. We extend our techniques to e�ciently post-process

the results, and correct the errors.

3. We evaluate our algorithms using a \case-study" approach for three di�erent applications

(with real data) and queries. Our results show that the new algorithms can e�ciently handle

much larger iceberg problems than current techniques. The case study also serves to illustrate

the tradeo�s involved in choosing one strategy over another, depending on available system

resources (such as size of disk and main memory).

The rest of the paper is structured as follows. In Section 2 we discuss a few examples for

iceberg queries, to illustrate some of the di�erent kinds of iceberg queries. In Section 3 we present

two simple algorithms that can be used to execute iceberg queries. In Section 4 we propose three

hybrid algorithms that combine the advantages of the two simple algorithms, in di�erent ways. In

Section 5 we propose several orthogonal techniques to optimize the hybrid strategies. In Section 7

we evaluate our techniques on three case studies, using over three gigabytes of data { the size of R

for some of these scenarios, if materialized, will require 50 to 100 gigabytes of storage. In Section 6

we propose some extensions to our algorithms, and we conclude in Section 9 with some directions

for future research.

2 Why are iceberg queries important?

We now illustrate using a few examples why executing iceberg queries e�ciently is important, and

why traditional techniques such as sorting and hashing can lead to very high query times and

inordinately large disk requirements.

3

EXAMPLE 2.1 PopularItem Query

Consider a TPC-D benchmark [21] style relation LineItem with attributes partKey, the key

for parts being sold, price, the price of the corresponding item, and numSales, the number of

units sold in a transaction, in region, the area where the part is being sold. The following query

computes the keys of popular items and regions, where the item's revenues in the region exceed

one million dollars.

CREATE VIEW PopularItems as
SELECT partKey, region, SUM(numSales * price)
FROM LineItem
GROUP BY partKey, region
HAVING SUM(numSales * price) >= 1,000,000$

It is easy to see that if we apply current techniques such as sorting, to sort the LineItem

relation to perform the aggregation, the response time for the above query is large. This is the

case even if most of the items in LineItem are not very popular, and have very small revenues. Of

course, if the minimum criteria for selecting an item was 10$ of revenue rather than one million

dollars, the sorting approach may be best since many items will satisfy the query. We intuitively see

that traditional techniques such as sorting and hashing are \over-kill" solutions and are not output

sensitive, in that they perform the same amount of work irrespective of how small the query's

output is. This is of course because they do not use the given threshold to execute the query faster

{ �rst, they perform the aggregation and later apply the thresholding. 2

EXAMPLE 2.2 DocumentOverlap Query

Web-searching engines such as AltaVista cluster web documents based on \syntactic similarity"

of documents [6, 7], The goal of clustering is to develop better web crawlers by identifying documents

that are replicated or are near-replicas of other documents (such as JAVA 1.1.3 manuals and

FAQs [20]).

The engines break up each web document into a set of signatures, such as hashed 8-byte integers

of sequences of words, or sentences. Then they maintain a relation DocSign with tuples hdi; cii if

document di contains signature ci. Then they identify a document pair to be a copy if they share

more than T2 signatures in common using the following query.

CREATE VIEW DocumentOverlaps
SELECT D1.doc, D2.doc, COUNT(D1.chunk)
FROM D1 as DocSign, D2 as DocSign
WHERE D1. chunk = D2. chunk AND

D1.doc NOT = D2.doc
GROUP BY D1. doc, D2. doc
HAVING COUNT(D1.chunk) >= T2

Currently, the DEC prototype [6, 7] uses sorting to execute the above self-join, as follows. They

�rst sort DocSign on the signatures so that for a given signature sk , all tuples hdi; ski such that

4

Rank

Frequency

T

rt
n

Heavy

Light
Freq(r)

(r)

Figure 1: A graphical view of terminology.

document di contains sk will be contiguous. Then for each pair of the form hdi; ski and hdj; ski

they explicitly materialize relation SignSign of the form hdi; dji, indicating that di and dj share

a signature in common. Then they sort SignSign, so that all tuples for a given document pair

are contiguous. Finally, they sequentially scan SignSign and count the number of document pairs

that occur more than T2 times in SignSign { these document pairs have more than T2 signatures

in common.

The above process explicitly materializes SignSign (termed R in our discussions), before it sorts

SignSign and thresholds on T2. As we shall see in one of our case-studies, this materialized relation

has very large storage requirements. In fact, for a small input DocSign of size 500 megabytes, this

relation grew to about 40 gigabytes, even though the �nal answer to the query was only one

megabyte worth of document pairs! 2

Iceberg queries also arise in many information retrieval (IR) problems. For instance, IR systems

often compute stop words, the set of frequently occuring words in a given corpus, to optimize query

processing and building inverted indices { this is another iceberg query. IR systems also sometimes

compute sets of frequent co-occurring words, and use these to help users construct queries. For

instance, the pairs \stockmarket," \stock price," and \chicken stock" may occur often in a collection

of documents. If the user enters the word \stock" in a query, the system may suggest \market,

\price," and \chicken" as useful words to add to the query to distinguish the way in which \stock"

is used. Computing co-occurring words again involves an iceberg query, where target-sets are pairs

of words [8]. We will study this application again in more detail in our experimental case-study.

From the above illustrative examples, we see that iceberg queries occur commonly in practice,

and need to be executed carefully so that query times and temporary storage requirements are

output sensitive.

3 Techniques for thresholding

For simplicity, we present our algorithms in the next few sections in the context of a materialized

5

relation R, with htarget; resti pairs. We assume for now we are executing a simple iceberg query

which groups on the single target in R, as opposed to a set of targets. As we will discuss later, our

algorithms can be easily extended for unmaterialized R as well as multiple target sets.

We start by establishing some terminology. Let V be an ordered list of targets in R, such that

V [r] is the rth most frequent target in R (rth highest rank). Let n be jV j. Let Freq(r) be the

frequency of V [r] in R. Let Area(r) be
Pr

i=1[Freq(i)], the total number of tuples in R with the r

most frequent targets. A special case is Area(n), which is equal to N (= jRj). Figure 1 shows a

typical frequency curve Freq(r). The leftmost value on the horizontal axis is 1, representing the

rank of most frequent target value.

Our prototypical iceberg query (Section 1) selects the target values with frequencies higher than

a threshold T . That is, if we de�ne rt to be maxfrjFreq(r) � Tg, then the answer to our query is

the set H = fV [1]; V [2]; : : : ; V [rt]g. We call the values in H the heavy targets, and we de�ne L to

be the remaining light values.

The algorithms we describe next answer the prototypical iceberg query, although they can be

easily adapted to other iceberg queries. In general, these algorithms compute a set F of potentially

heavy targets, that contains as many members of H as possible. In the cases when F � H is

non-empty the algorithm reports false positives (light values are reported as heavy). If H � F is

non-empty the algorithm generates false negatives (heavy targets are missed). An algorithm can

have none, one, or both form of errors. These errors can be eliminated through post-processing:

1. Eliminating False Positives: After F is computed, we can scan R and explicitly count the

frequency of targets in F . Only targets that occur T or more times are output in the �nal

answer. We call this procedure Count(F). This post-processing is e�cient if the targets in

F can be held in main-memory along with say 2 { 4 bytes per target for counting. If F is

too large, the e�ciency of counting deteriorates. In fact, as jF j ! n, the post-processing will

take about the same time as running the original iceberg query.

2. Eliminating False Negatives: In general, post-processing to \regain" false negatives is

very ine�cient, and may in fact be as bad as the original problem. However, we can regain

false negatives e�ciently in some high skew cases where most R tuples have target values

from a very small set.2 In particular, suppose that we have obtained a partial set of heavy

targets H 0 = F \H , such that most tuples in R have target values in H 0. Then we can scan

R, eliminating tuples with values in H 0. The iceberg query can then be run on the remaining

small set of tuples (either by sorting or counting) to obtain any heavy values that were missed

in H 0.

We now present two simple algorithms to compute F , that we use as basic blocks for our

2The 80 { 20 rule is an instance of high skew. When the rule applies, a very small fraction of targets account for

80% of tuples in R, while the other targets together account for the other 20% [24].

6

subsequent, more sophisticated algorithms. Each algorithm uses some simple data-structures such

as lists, counters and bitmaps for e�cient counting. For ease of presentation, we assume that the

number of elements in each structure is much smaller than jV j, and that all structures �t in main

memory. In Section 7 we evaluate the memory requirements more carefully.

3.1 A Sampling-Based Algorithm (SCALED-SAMPLING)

Sampling procedures are widely adopted in practice to estimate sizes of query results [12], and to

perform online aggregation [13]. (See [15] for a good discussion of sampling techniques to e�ciently

obtain unbiased samples.) We now consider a simple sampling-based algorithm for iceberg queries.

The basic idea is as follows: Take a random sample of size s from R. If the count of each distinct

target in the sample, scaled by N=s, exceeds the speci�ed threshold, the target is part of the

candidate set, F . This sampling-based algorithm is simple to implement and e�cient to run.

However, this algorithm has both false-positives and false-negatives and removing these errors

e�ciently is non-trivial, as we discussed above. We will show how to remove these errors using our

HYBRID algorithms in the next section.

3.2 Coarse counting by bucketizing elements (COARSE-COUNT)

\Coarse counting" or \probabilistic counting" is a technique often used for query size estimation,

for computing the number of distinct targets in a relation [10, 23], for mining association rules [16],

and for other applications. The simplest form of coarse counting uses an arrayA[1::m] ofm counters

and a hash function h1, which maps target values from log2 n bits to log2m bits, m << n. The

CoarseCount algorithm works as follows: Initialize all m entries of A to zero. Then perform a

linear scan of R. For each tuple in R with target v, increment the counter A[h1(v)] by one. After

completing this hashing scan of R, compute a bitmap array BITMAP1[1::m] by scanning through

array A, and setting BITMAP1[i] if bucket i is heavy, i.e. if A[i] � T . We compute BITMAP1

since it is much smaller than A, and maintains all the information required in the next phase. After

BITMAP1 is computed, we reclaim the memory allocated to A. We then compute F by performing

a candidate-selection scan of R, where we scan R, and for each target v whose BITMAP1[h1(v)] is

one, we add v to F . Finally we remove the false-positives by executing Count(F). Note that there

are no false-negatives in our coarse-counting approach.

The candidate-selection scan in this simple coarse-counting algorithm may compute a large F

(that may be many times as large as the given memory), since light targets may be hashed into

heavy buckets. A bucket may be heavy if it has (1) one or more heavy elements, or (2) many light

elements whose combined counts are above the speci�ed threshold.

4 HYBRID techniques

We now present three di�erent approaches to combine the sampling and counting approaches we

presented earlier. Each approach �rst samples the data to identify candidates for heavy targets;

7

then it uses coarse-counting principles to remove false-negatives and false-positives. By this two-

stage approach, we manage to reduce the number of targets that fall into heavy buckets { this leads

to fewer light targets becoming false positives. We refer to the three approaches as the HYBRID

class of algorithms.

4.1 DEFER-COUNT Algorithm

First, compute a small sample (size s << n) of the data using sampling techniques discussed in

Section 3.1. Then select the f; f < s; most frequent targets in the sample and add them to F .

(These targets are likely to be heavy, although we do not know for sure yet.) Now execute the

hashing scan of COARSE-COUNT, but do not increment the counters in A for the targets already

in F . Next perform the candidate-selection scan as before, adding targets to F . Finally, remove

false positives from F by executing Count(F).

We see an example of this approach in Figure 2 (a). Consider the case when p and q are heavy

targets, and targets a and b are light targets. In this case, p and q were identi�ed in the sampling

phase to be potentially heavy, and are maintained explicitly in memory (denote by `p' and `q') so

they are not counted in the buckets (as are a and b).

The intuition behind the DEFER-COUNT algorithm is as follows. Sampling is very good for

identifying some of the heaviest targets, even though it is not good for �nding all the heavy targets.

Thus, we select f so that we only place in F targets that have a very high probability of being

heavy. Then, for each of these targets v that is identi�ed in advance of the hashing scan, we avoid

pushing A[h1(v)] over the threshold, at least on account of v. This leads to fewer heavy buckets,

and therefore fewer false positives.

The disadvantage of DEFER-COUNT is that it splits up valuable main memory between the

sample set, and the buckets for counting. Even if f is small, we maintain the explicit target. For

instance, if we use DEFER-COUNT to count heavy item pairs (two-�eld target set) in data mining,

we need eight bytes to store the item pair. This gets progressively worse if we start counting heavy

item triples, or heavy item quadruples, and so on. Another problem with implementing DEFER-

COUNT is that it is hard to choose good values for s and f that are useful for a variety of data

sets. Yet another problem with DEFER-COUNT is that for each target, we incur the overhead of

checking if the target exists in f during the hashing scan.

4.2 MULTI-LEVEL Algorithm

We now propose an algorithm that does not explicitly maintain the list of potentially heavy

targets in main memory like DEFER-COUNT. Instead MULTI-LEVEL uses the sampling phase

to identify potentially heavy buckets as follows.

First, perform a sampling scan of the data: For each target v chosen during this sampling scan,

increment A[h(v)], for hash function h. After sampling s targets, consider each of the A buckets.

If A[i] > T � s=n, we mark the ith bucket to be potentially heavy. For each such bucket allocate m2

8

m3

m1

(a) DEFER-COUNT
f

m1

(b) MULTI-LEVEL (c) MULTI-STAGE

‘p’ ‘q’

m2

m1

p a

b q

p q
a b

b

a

Figure 2: Alternate HYBRID techniques to combine sampling and coarse-counting.

auxiliary buckets in main memory. (We will sometimes refer to the A buckets as primary buckets,

to maintain the distinction.)

Next, reset all counters in the A array to zero. Then perform a hashing scan of all the data.

For each target v in the data, increment A[h(v)] if the bucket corresponding to h(v) is not marked

as potentially heavy. If the bucket is so marked, apply a second hash function h2(v) and increment

the corresponding auxiliary bucket.

We show an example of this procedure in Figure 2 (b). In the sampling phase, two buckets

(marked with dotted X's) are identi�ed to be potentially heavy, and are each allocated m2 = 2

auxiliary buckets. During the subsequent scan, when targets fa; b; p; qg fall into the heavy buckets,

they are rehashed using h2 to their corresponding auxiliary buckets. Note that we do not explicitly

store the targets in the auxiliary buckets as indicated in the �gure; we continue to maintain counters

in them.

The idea behind the MULTI-LEVEL algorithm is very similar to the concept of extensible indices

commonly used in databases [22] { these indices grow over-populated buckets by adding auxiliary

buckets dynamically. However, the di�erence is that in the case of extensible indices the entire key

that is being indexed, is stored. Hence when buckets are over-populated, we can dynamically add

auxiliary buckets e�ciently. Recall that we cannot a�ord to store the targets explicitly in main

memory, and can only maintain counters. This is the reason we perform the pre-scan to pre-allocate

auxiliary buckets for potentially heavy buckets. Also notice that MULTI-LEVEL does not store the

sample set explicitly like DEFER-COUNT does. This is useful especially when the size of targets

is very large.

One problem with MULTI-LEVEL is that it splits a given amount of main memory between

the primary and auxiliary buckets. Deciding how to split memory across these two structures is

not a simple problem { we can only empirically determine good splits for datasets. Also, the cost

of rehashing into the auxiliary buckets could be expensive, if a second hash function is employed.

In practice, however, we can avoid this by using one hash function: we can use fewer bits for the

9

�rst hashing, and use the residual bits to \hash" the target into the auxiliary buckets.

We now discuss one important detail for implementing the above scheme. In Figure 2, we

maintain pointers to auxiliary buckets. In some cases, maintaining eight bytes per pointer may

be expensive especially if the number of potentially heavy buckets is high. In such cases, we can

allocate all the auxiliary buckets for all potentially-heavy buckets contiguously in main memory

starting at base address B. For the ith potentially-heavy bucket, we can store in A the o�set into

the auxiliary buckets. We can then compute the auxiliary buckets for potentially heavy bucket

A[i], to be in locations [B + (A[i]� 1)�m2; B +A[i]�m2).

4.3 MULTI-STAGE Algorithm

We now propose a new technique that uses available memory more e�ciently than the MULTI-

LEVEL algorithm. MULTI-STAGE has the same pre-scan sampling phase as MULTI-LEVEL,

where it identi�es potentially heavy buckets. However, MULTI-STAGE does not allocate auxiliary

buckets per potentially heavy bucket. Rather it allocates a common pool of auxiliary buckets

B[1; 2; : : : ; m3]. Then it performs a hashing scan of the data as follows. For each target v in the

data, it increments A[h(v)] if the bucket corresponding to h(v) is not marked as potentially heavy.

If the bucket is so marked, apply a second hash function h2 and increment B[h2(v)].

We present an example of this procedure in Figure 2 (c). We mark the common B(m3 = 2)

arrays using dotted lines. Note that the targets fa; b; p; qg are remapped into the auxiliary buckets,

using a second hash function that uniformly distributes the targets across the common pool of

auxiliary buckets. It is easy to see that in this example there is a 50% chance that both the heavy

targets p and q will fall into the same bucket. In such cases, targets a and b are no longer false-

positives due to p and q. Indeed in the �gure, we present the case when p and q do fall into the

same bucket. We have analysed MULTI-LEVEL based on the above intuition, in the full version

of the paper [9].

The main intuition behind sharing a common pool of auxiliary buckets across potentially heavy

buckets is that several heavy targets when rehashed into B could fall into the same bucket as other

heavy targets (as illustrated in the example). MULTI-LEVEL does not have this characteristic

since the heavy targets are rehashed into their local auxiliary structures. Hence we can expect

MULTI-STAGE to have fewer false-positives that MULTI-LEVEL, for a given amount of memory.

MULTI-STAGE shares a disadvantage with MULTI-LEVEL in that determining how to split the

memory across the primary buckets and the auxiliary buckets can only be determined empirically.

5 Optimizing HYBRID using MULTIBUCKET algorithms

The HYBRID algorithms may still su�er from many false-positives if many light values fall into

buckets with (1) one or more heavy targets, or (2) many light values. The sampling strategies

we outlined in the last section alleviate the �rst problem to a certain extent. However the heavy

10

targets not identi�ed by sampling could still lead to several light values falling into heavy buckets.

Also HYBRID cannot avoid the second problem. We now propose how to improve the HYBRID

techniques of the last section, using multiple sets of primary and auxiliary buckets, to reduce the

number of false positives signi�cantly. We analyze the same idea in two di�erent contexts, in the

following subsections based on the number of passes required over the data.

For clarity, we describe the techniques of this section, in the context of the simple DEFER-

COUNT algorithm, even though the techniques are also applicable to the MULTI-LEVEL, and

MULTI-STAGE algorithms. Furthermore, for the techniques we present below we continue to

perform the sampling scan to identify potentially heavy targets, and store them in F . We do not

count these targets during the hashing scans, but count them explicitly in the candidate-selection

phase. After the candidate-selection phase we continue to execute Count(F) to remove false-

positives. Since these steps are common to all the following techniques, we do not repeat these

steps in the following discussion.

5.1 Single scan DEFER-COUNT with multiple hash functions (UNISCAN)

We illustrate UNISCAN using two hash functions h1 and h2 which map target values from log2 n

bits to log2(m=2) bits, m << n. The memory allocated is �rst divided into two parts for the two

counting and bitmap arrays. That is, we now have A1[1::m=2], A2[1::m=2], BITMAP1[1::m=2]

and BITMAP2[1::m=2]. We then execute the pre-scan sampling phase in DEFER-COUNT and

identify f potentially heavy candidates, and store them in F . Next, we do one pass over the input

data and for each tuple in R with value v, v =2 F , we increment both A1[h1(v)] and A2[h2(v)] by

one. Finally we set BITMAP1[i] to 1 if A1[i] � T , 1 � i � m=2. Similarly for BITMAP2, and

then deallocate A1 and A2. In the candidate-selection phase, we do one pass of the data and for

each tuple with value v, we add v to F only if both BITMAP1[h1(v)] and BITMAP2[h2(v)] are set

to one. We can easily generalize the above procedure for k di�erent hash functions h1; h2; : : : ; hk.

As mentioned earlier, for now we assume that A, the k bitmaps, and F all �t in main memory. We

will discuss our model for memory usage in Section 7.

Choosing the right value of k is an interesting problem, for a given amount of main memory.

As we choose a larger value of k, we have many hash tables but each hash table is smaller. While

the former helps in reducing the number of false positives, the latter increases the number of false

positives. Hence there is a natural trade-o� point for choosing k. We discuss in the Appendix how

to choose a good value of k for UNISCAN.

5.2 Multiple scan DEFER-COUNT with multiple hash functions (MULTISCAN)

Rather than use multiple hash functions within one hashing scan and su�er an increased number of

false positives due to smaller hash tables, we can use the same idea across multiple hashing scans

as follows. After the sampling pre-scan, execute one hashing scan with hash function h1. Store the

corresponding BITMAP1 array on disk. Now perform another hashing scan with a di�erent hash

function h2. Store the corresponding BITMAP2 array on disk. After performing k hashing scans,

11

BITMAP1:

BITMAP2:

a c eb d a c eb d

e d a b c e d a b c

1 10 0 1 10 0

10 40 40 20

40 30 0 40

1 1 10

A:Hashing
Scan 1

Hashing
Scan 2

10 40 2040

20 20 0 40

0 0 0 1

A:

A:

A:

(a) MULTISCAN (b) MULTISCAN-SHARED

Figure 3: Comparing MULTISCAN versus MULTISCAN-SHARED.

leave last BITMAP in memory and retrieve the k � 1 BITMAP arrays from disk. Then execute

the candidate-selection scan, and add value v to F if BITMAPi[hi(v)] = 1, 8i; 1 � i � k.

5.3 Improving MULTISCAN with shared bitmaps (MULTISCAN-SHARED)

In MULTISCAN we performed each hashing scan independent of the previous scans, even though

the BITMAP information from previous scans was available. In MULTISCAN-SHARED we as-

sume that in the ith hashing scan, bitmaps from all i previous hashing scans are retained in mem-

ory. This optimization works as follows: During the (i+ 1)st hashing scan, for target v, increment

A[hi+1(v)] by one, only if BITMAPj [hj(v)] = 1, for all j, 1 � j � i.

The following example illustrates how MULTISCAN-SHARED reduces the number of false-

positives over MULTISCAN. Consider the case when we have the following h target, frequency i

pairs in R: ha : 10i, hb : 20i, hc : 40i, hd : 20i, he : 20i, i.e., target a occurs in ten tuples in

R, b occurs in 20 tuples in R, and so on. Let T = 30, and m = 4. Let h1 map the targets

to the following buckets, set of targets pairs: [0 : fag; 1 : fb; dg; 2 : fcg; 3 : feg] as shown in

Figure 3, i.e., h1(a) = 0, h1(b) = h1(d) = 1, etc. Similarly h2 maps the targets to the following

buckets [0 : fe; dg; 1 : fa; bg; 2 : fg; 3 : fcg]. In Figure 3(a) we show the counts in array A and the

corresponding BITMAP after the �rst hashing scan when we execute MULTISCAN. Similarly we

compute A and BITMAP2 after the second hashing scan. Now in the candidate selection scan of

MULTISCAN. we would choose fb; c; dg to be part of F , since targets b; c; d fall into heavy buckets

under both hash functions.

Now consider the execution of MULTISCAN-SHARED in Figure 3(b). The �rst hashing scan

remains the same as before. The second scan however computes a di�erent bitmap since the second

hashing scan uses the information in BITMAP1 before incrementing A. To illustrate, consider how

12

e is counted by each algorithm in the second hashing scan. In MULTISCAN, A[h2(e)] is incremented

for each of the 20 occurrences of e. However in MULTISCAN-SHARED, A[h2(e)] is not incremented

for the 20 occurences of e, since we already know that e is light (because BITMAP1[3] = 0). Since

e does not increment A[0] in the second hashing scan, d is no longer a part of the candidate set. In

fact in the candidate-selection scan, the only target chosen by the MULTISCAN-SHARED will be

fcg, as opposed to the fb; c; dg chosen by MULTISCAN.

5.4 Variant of MULTISCAN-SHARED (MULTISCAN-SHARED2)

We now propose a variant of MULTISCAN-SHARED which uses less memory for BITMAP s. In

this variant, we maintain the BITMAP 's only from the last q hashing scans while performing the

(i + 1)st (q � i) hashing scan, rather than maintaining all i prior BITMAP s. The conjecture is

that the q latest BITMAP s from hashing scans i� q + 1 through i have fewer and fewer bits set

to one. Therefore these BITMAP s have signi�cant pruning power in terms of pruning away many

light values at the cost of lower memory usage. We use MULTISCAN-SHARED2 to denote this

algorithm.

6 Extending HYBRID and MULTIBUCKET algorithms

In this section we brie
y describe some variations to the schemes we presented earlier.

1. Collapsing candidate-selection scan with �nal counting-scan: The MULTISCAN

algorithm (and its extensions that were proposed in Sections 5.3 and 5.4) performs k hashing

scans, one candidate-selection scan, and �nally one counting scan where false positives were

eliminated. In cases where the size of F is expected to be small, we can collapse the last two

scans into one as follows. When executing the candidate-selection scan, we add an in-memory

counter to each element of F . In that scan, as we add each target to F (because it appeared

in heavy buckets for all k-hash functions), we check if the target was already in F . If so, we

increment its counter; if not, we add it to F with its counter initialized to 1. We can dispense

with the �nal counting-scan because we already have a count of how many times each F

target appears in R. Targets whose count exceed the threshold are in the �nal answer.

2. Parallelizing hashing scans for MULTISCAN: We can parallelize the hashing scans of

MULTISCAN across multiple processes. In such a case, the time for the hashing scans drops

from the time for k sequential scans, to the time for a single scan. Of course, we cannot use

the same optimization for MULTISCAN-SHARED and MULTISCAN-SHARED2 since they

use bitmaps from previous iterations.

3. SUM queries: As we mentioned in Section 1, we can extend our techniques to iceberg queries

containing HAVING SUM(attrib). To illustrate, consider query PopularItem from Section 2.

We can perform this query by performing a hashing scan on the LineItem relation. In this

pass, we compute h1(partKey; region), and increment the corresponding counter in A by

13

numSales � price. At the end of the hashing scan, compress the A array into BITMAP1,

with the de�nition that bucket i is heavy if A[i] is greater than or equal to the given threshold

value of one million. Then perform subsequent hashing scans if necessary and �nally produce

partKeys's whose total revenues exceed the speci�ed threshold.

7 Case studies

Given the relatively large number of techniques we present in this paper, each of which are parame-

terized in di�erent ways (such as how much of data we should sample, s, how many values to retain

to be potentially heavy, f and memory allocations), it is di�cult to draw concrete conclusions

without looking at particular application scenarios. We chose three distinct application scenarios

and designed our experiments to answer the following questions: (1) How does each scheme perform

as we vary the amount of memory allocated? We report the performance both in terms of number

of false positives (jF j) produced, and the total time each scheme takes to produce F , as well as

to remove the false positives using Count(F). (2) How does each scheme perform as we vary the

threshold? As above, we report both jF j and the total time. (3) How do schemes perform for

di�erent data distributions? That is, if the input data follows a skewed Zip�an distribution [24]

(also called \80� 20" distribution), as opposed to less skewed distributions, how are the schemes

a�ected by sampling?

Before we present our results, we discuss how we allocate memory in our experiments. We

experimented with a variety of ways to split the available memory between the sample set of size f

(in case of DEFER-COUNT based algorithms), the primary and the auxiliary buckets. We found

the following approach to work best for our data.

1. Allocate f : For algorithms based on DEFER-COUNT, choose a small f for the sampling

scan and allocate memory for that set. We discuss later what should be the value of f , for

each application.

2. Allocate auxiliary buckets: Allocate paux percent of the remaining memory after the �rst

step to auxiliary buckets. As the algorithm executes we may discover that this amount of

allocated memory was insu�cient for the auxiliary buckets. If that happens, we greedily

select the buckets with highest A counter values, and assign as many of these as possible to

the auxiliary area. The remaining potentially heavy buckets, that could not be assigned to

the limited auxiliary area, are treated as any other primary bucket during the hashing scan.

3. Allocate primary buckets and bitmaps: Allocate the balance of the memory to the

primary buckets and their bitmaps. In case of UNISCAN we need to this memory among the

k primary buckets and their bitmaps (based on the value of k chosen by the analysis in the

Appendix).

In our experiments, we found paux between 15�20% to be good values for splitting up our memory.

14

Before the candidate-selection scan, we reclaim the memory allocated to the primary buckets and

allocate that to store F .

In the following experiments, if the �nal F (input to Count(F)) does not �t in main memory, we

stream the tuples in F onto disk, and we execute Count(F) using a disk-based sorting algorithm.

Our implementation is enhanced with early aggregation [2] so that it integrates counting into the

sorting and merging processes, for e�cient execution. As we discussed earlier, this is merely one way

to execute Count(F). Hence the reader should not interpret the results of this section as absolute

predictions, but rather as illustrations of performance trends. For the following experiments, we

used a SUN ULTRA/II running SunOS 5.6, with 256 MBs of RAM and 18 GBs of local disk space.

Case 1: Market basket query

We use the market basket query to �nd commonly occuring word pairs. For this we use 100; 000

web documents crawled and stored by the Stanford BackRub webcrawler [5]. The average length

of each document is 118 words. From this data we computed the DocWord relation to be hdocID,

wordIDi, if document with identi�er docID had a word with identi�er wordID. This relation was

about 80 MBs, when we used 4-byte integers for docIDs and wordIDs. Note that we removed entries

corresponding to 500 pre-de�ned stop words from this relation [17]. Recall that the R over which

the iceberg query is to be executed has all pairs of words that occur in the same document. If R

were to be materialized on disk, it would require about 29:4 GBs to store R; in addition, we may

require temporary storage while performing the aggregation. Since this is impractical, we do not

discuss this technique any more in this section.

To avoid explicitly materializing R we use the following technique that we can use in general

to execute iceberg queries, when R is not materialized. Typically, tuples that refer to the same

document are contiguous in DocWord. (This is because DocWord is produced by reading and

parsing documents one at a time. If entries are not contiguous, we can sort the relation.) Because

of this property, we can simply scan DocWord and produce hwi; wji for each wi, wj pair that occurs

in the same document. Rather than explicitly storing such tuples, stream the tuples directly to the

algorithm we use to execute the iceberg query. For instance, if we use DEFER-COUNT to execute

the iceberg query (assume s = 0), increment A[h(wi; wj)] as soon as tuple hwi; wji is produced.

Notice that we cannot apply a similar optimization for sorting or hybrid hashing based schemes,

since the tuples are materialized explicitly (for sorting), or will need to be stored in the hash table

(for hybrid hashing).

We now discuss a few representative schemes for speci�c values of K to illustrate some of the

trade-o�s involved. (We study the performance of all schemes in greater detail, in the full version of

this paper [9].) Speci�cally, we present results for MULTISCAN/D, MULTISCAN-SHARED/D and

UNISCAN/D, the corresponding multi-bucket optimization of DEFER-COUNT. We also evaluate

MULTI-STAGE for K = 1. We found a 1% sample of n (s = 1%) and f = 1000 to work well in

practice for this data.

15

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

8 12 16 20 24 28 32 36 40

N
um

be
r

of
 c

an
di

da
te

 p
ai

rs

Memory allocated (MBs)

UNISCAN/D [K = 1]
MULTI-STAGE [K = 1]
MULTISCAN/D [K = 2]

MULTISCAN-SHARED/D [K = 2]
UNISCAN/D [K = 2]

Figure 4: jF j as memory varies (T = 500).

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

8 12 16 20 24 28 32 36 40

T
ot

al
 R

un
ni

ng
 T

im
e

Memory allocated (MBs)

UNISCAN/D [K = 1]
MULTI-STAGE [K = 1]
MULTISCAN/D [K = 2]

MULTISCAN-SHARED/D [K = 2]
UNISCAN/D [K = 2]

Figure 5: Total time as memory varies (T = 500).

In Figure 4 we show how jF j, the number of candidate pairs, varies as the amount of memory

allocated increases. We see that jF j drops as more memory is allocated, as expected. Also we see

that MULTISCAN/D [K = 2] and MULTISCAN-SHARED/D [K = 2] perform best, in terms of

choosing the smallest jF j. This is because when the amount of memory is small, doing multiple

passes over the data using most of the available memory for the A array, helps prune the number

of false positives signi�cantly. UNISCAN/D [K = 2] performs poorly initially since the amount of

main memory is very small, but the di�erence between UNISCAN/D [K = 1] and UNISCAN/D [K

= 2] drops with larger memory. For memory more than about 34 MBs, we see that UNISCAN/D

[K = 2] performs better than its K = 1 counterpart.

In Figure 5 we see the total time to answer the iceberg query as the amount of memory varies.

We see that MULTISCAN/D and MULTISCAN-SHARED/D perform steadily across the di�erent

memory sizes, since they do not produce too many false positives. On the other hand, MULTI-

STAGE [K = 1] performs badly when memory is limited; beyond about 14 MBs it performs best.

This is because (1) the number of false positives is relatively small and hence counting can be

done in main memory, (2) MULTI-STAGE scans the data one less time, and uses less CPU time in

computing fewer hash functions than the other multi-bucket algorithms (such as MULTISCAN/D).

In Figure 6 we study how jF j, the number of candidates, varies as the threshold is varied. We

see that MULTISCAN/D [K = 2] and MULTISCAN-SHARED/D [K = 2] tend to have the smallest

jF j. Again, we see that performing multiple passes over the data using multiple hashing functions

helps prune away many false-positives. In Figure 7 we see the corresponding total time to answer

the iceberg query. We see that MULTI-STAGE performs the best in this interval, again because

(1) F is relatively small, and (2) it performs one fewer scan over the data, and needs to compute

fewer hash functions than MULTISCAN/D and MULTISCAN-SHARED/D.

In summary, we see that MULTI-STAGE works best since this application had very little data.

16

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

300 400 500 600 700 800 900 1000

N
um

be
r

of
 c

an
di

da
te

 p
ai

rs

Threshold

UNISCAN/D [K = 1]
MULTI-STAGE [K = 1]
MULTISCAN/D [K = 2]

MULTISCAN-SHARED/D [K = 2]
UNISCAN/D [K = 2]

Figure 6: jF j as threshold varies (M = 20 MB).

4000

6000

8000

10000

12000

14000

16000

18000

20000

300 400 500 600 700 800 900 1000

T
ot

al
 R

un
ni

ng
 T

im
e

Threshold

UNISCAN/D [K = 1]
MULTI-STAGE [K = 1]
MULTISCAN/D [K = 2]

MULTISCAN-SHARED/D [K = 2]
UNISCAN/D [K = 2]

Figure 7: Total time as threshold varies (M = 20 MB).

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 100001000001e+061e+071e+08

R
an

k

Frequency

C = 1
C = 2
C = 5

C = 10

Figure 8: Frequency-rank curves for di�erent chunkings.

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

100

10 100 1000 10000 100000 1e+06

R
es

ul
t s

iz
e

as
 p

er
ce

nt
ag

e
of

 n

Threshold T

C = 1
C = 2
C = 5

C =1 0

Figure 9: Result sizes for di�erent thresholds.

Case 2: Computing StopChunks

We now consider how sensitive our schemes are to skews in data distribution, using an IR exam-

ple. We discussed in Section 2 how IR systems compute a set of stop words for e�ciency. In

general, IR systems also compute \stop chunks," which are syntactic units of text that occur fre-

quently. By identifying these popular chunks, we can improve phrase searching and indexing. For

instance, chunks such as \Netscape Mozilla/1.0" occur frequently in web documents and may not

even be indexed in certain implementations of IR systems (such as in [18, 19]), to reduce storage

requirements.

For this set of experiments, we used 300; 000 documents we obtained from the Stanford BackRub

crawler (as above). We de�ned chunks based on sliding windows of words as in [18]. We say we use

\C = i" chunking, if the jth chunk of a given document is the sequence of words from j through

j+ i� 1. For a corpus of documents, we can compute the DocSign (C = i) relation which contains

hdh; sji, if document dh contains sj , the 8-byte hashed version of the jth chunk. For our experiments

17

we computed four di�erent DocSign tables for C = 1; 2; 5; 10. (Note that the DocSign relation for

C = 1 is the relation used to compute stop words in IR systems.)

Our �rst two graphs illustrate the nature of the data, and not a speci�c algorithm. In Figure 8

we show, on a log-log plot, the frequency-rank curves of the four di�erent chunkings. As expected,

the smaller the C used to construct a chunk, the fewer the number of distinct target values, and the

larger the data skew. For instance, with C = 1, the number of distinct chunks, n, is over 1:5 million,

and the heaviest target occurs about 4:5 million times in DocChunk. For C = 10, n = 27:7 million,

while the heaviest target occurs only 0:21 million times. The size of each DocSign relations was

about 4:2 gigabytes (Note that we did not remove pre-computed stop words from these relations

as we did in the market-basket query.)

In Figure 9 we show (again on a log-log plot) what percentage of the n unique terms are actually

heavy, for di�erent thresholds. We see in the �gure that, as expected, the number of heavy targets

(the tip of the iceberg) drops signi�cantly as T increases.

In the following two graphs, Figure 10 and 11, we study how the number of hashing scans K,

and the number of hash buckets m a�ect false-positive errors. Due to lack of space, we present

the results only in the context of MULTISCAN-SHARED2/D, with q = 2 (the number of previous

bitmaps cached in memory). The vertical axis in both �gures is the percentage of false positives

(100 � FP
n
, where FP is the number of false positives). As we expected, the percentage of false

positives drops dramatically with increasing k. For instance for C = 1, the percentage drops from

about 70% for k = 1 to less than 10% for k = 4. Also it is interesting to note that the number

of false positives drops as the data is less skewed (from C = 1 through C = 10), especially as the

number of hashing scans increases. This we attribute to three factors: (1) there are fewer heavy

targets (Figure 9), (2) since data is not very skewed, fewer light targets fall into buckets that are

heavy due to heavy targets, and (3) as more hashing scans are performed, fewer light targets fall

into heavy buckets across each of the hashing scans.

In summary, these experiments quantify the impact of skew, and provide guidelines for selecting

the number of hashing scans needed by MULTISCAN-SHARED2/D, as the \tip of the iceberg"

changes in size. Analogous behavior can be observed for the other schemes.

Case 3: DocumentOverlap Query

In Figure 12 we present the total time to execute the DocumentOverlap query (discussed in Sec-

tion 2) using MULTISCAN and MULTISCAN-SHARED techniques as the amount of memory (M)

changes. We executed the query on the DocSign relation from Case 2, when C = 1. Since the data

was unskewed for this query, we avoid the sampling scan, i.e., s = 0%.

In Figure 12 we see that MULTISCAN-SHARED2 [q = 1] performs best, when the amount of

memory is small, but progressively becomes inferior to MULTISCAN and MULTISCAN-SHARED

as memory increases. MULTISCAN-SHARED [q = 2] is in between MULTISCAN-SHARED [q =

1] and MULTISCAN-SHARED, for small values of memory. The above behavior of MULTISCAN-

18

k = 1

k = 2

k = 3

k = 4

C = 1 C = 2 C = 5 C = 10

10%

100%

1%

0.01%

0.1%

< 0.001%

100*FP
n

Figure 10: Performance of MULTISCAN-SHARED2/D

with k (T = 1000; m = 1% of n).

m = 10% of n
m = 5% of n
m = 1% of n
m = 0.5% of n
m = 0.1% of n

100%

10%

1%

0.1%

0.01%

< 0.001%

C = 2 C = 5 C = 10C = 1

100 * FP
n

Figure 11: Performance of MULTISCAN-SHARED2/D

with m (T = 1000; k = 2).

SHARED2 compared to MULTISCAN-SHARED is due to the following competing factors: (1)

MULTISCAN-SHARED2 uses fewer bitmaps than MULTISCAN-SHARED, thereby allocating

more memory for primary buckets. (2) For a given amount of memory, MULTISCAN-SHARED

prunes more light targets than MULTISCAN-SHARED2, as we discussed earlier. For small values

of memory, MULTISCAN-SHARED2 performs better than MULTISCAN-SHARED, since the �rst

factor dominates. For larger values of memory, the extra space allocated to the additional bitmaps

for MULTISCAN-SHARED still leaves enough memory for the primary buckets. Hence the second

factor dominates. We also see that MULTISCAN does not perform too well for small memory,

since it does not use bitmaps to prune away light targets, as we discussed earlier. Hence we see

that choosing q = 1 or 2 may be useful for small sized memory while still leaving su�cient main

memory for primary buckets.

The size of R, if materialized, is 52 GBs. If we assume disks can execute sequential scans at the

rate of 10 MB/sec, it would take 52 � 1024=10 � 5300 seconds each to read and write R. However,

notice that MULTISCAN-SHARED2 [q = 1] would be done executing even before R is written

once and read once! Of course, since R has to be sorted to execute the iceberg query, it is easy to

see that sorting based execution would require too much disk space to materialize and sort R, and

will take much longer than our schemes.

7.1 Summary

Based on our case studies (and from experiments we do not report here due to lack of space [9]),

we propose the following informal \rules of thumb" to combine schemes from the HYBRID and

MULTIBUCKET algorithms:

1. HYBRID algorithms: MULTI-LEVEL rarely performs well in our experiments, while

DEFER-COUNT and MULTI-STAGE tend to do very well under di�erent circumstances. If

you expect the data distribution to be very skewed (such as in Zip�an distributions [24] where

very few targets are heavy, but constitute most of the relation), use DEFER-COUNT with a

small f set. If you expect the data not to be too skewed, use MULTI-STAGE since it does

19

6000

8000

10000

12000

14000

16000

18000

20000

22000

10 20 30 40 50 60 70 80 90 100

T
im

e
(s

ec
on

ds
)

Size of memory (MB)

MULTISCAN
MULTISCAN-SHARED

MULTISCAN-SHARED2 [q = 1]
MULTISCAN-SHARED2 [q = 2]

Figure 12: Performance of algorithms with M for DocumentOverlap query for C = 1.

not incur the overhead of looking up the values in f . If you expect the data distribution to

be
at, do not use the sampling scan.

2. MULTIBUCKET algorithms: In general we recommend using MULTISCAN-SHARED2

with q = 1 or q = 2. For relatively large values of memory, we recommend UNISCAN with

multiple hash functions, since we can choose K > 1 and apply multiple hash functions within

one hashing scan, as we discuss in the full version of this paper [9].

8 Related Work

Flajolet and Martin [10], and Whang et al. [23] proposed a simple form of coarse counting for

estimating the number of distinct elements in a multiset. Park et al. [16] proposed coarse counting

in the context of mining association rules. All the above approaches use a single hash function

for their coarse counting, and hence tend to have many false positives [8]. We extend the above

techniques using our HYBRID and MULTIBUCKET algorithms, and perform a comprehensive

study of these techniques using a case study approach.

9 Conclusion

In this paper we studied e�cient execution techniques for iceberg queries, an important class of

queries with widespread application in data-warehousing, data mining, information retrieval and

copy detection. We proposed algorithms that compute the result, the \tip of the iceberg," much

more e�ciently than conventional schemes. We evaluated our algorithms using a case study ap-

proach in three real applications, and observed that the savings are indeed very signi�cant. Some

algorithms in the suite we have provided are better suited to some scenarios, depending on the data

skew, available memory, and other factors. We have provided some empirical \rules of thumb" for

selecting a scheme and for allocating memory to its data structures.

20

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In Proceed-

ings of International Conference on Very Large Databases (VLDB '94), pages 487 { 499, September

1994.

[2] D. Bitton and D. J. DeWitt. Duplicate record elimination in large data �les. ACM Transactions in

Database Systems (TODS), 8(2):255 { 265, 1983.

[3] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association rules to

correlations. In Proceedings of ACM SIGMOD Conference, pages 265 { 276, May 1997.

[4] S. Brin, R. Motwani, J.D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for

masket basket data. In Proceedings of ACM SIGMOD Conference, pages 255 { 264, May 1997.

[5] S. Brin and L. Page. Google search engine/ backrub web crawler.

[6] A. Broder. On the resemblance and containment of documents. Technical report, DIGITAL Systems

Research Center Tech. Report, 1997.

[7] A. Broder, S.C. Glassman, and M. S. Manasse. Syntactic Clustering of the Web. In Sixth International

World Wide Web Conference, April 1997.

[8] M. Fang, R. Motwani, and J. Ullman. Improvements over hash-based algorithms for mining association

rules. Technical report, Stanford DBGroup Technical Report, October 1997.

[9] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J.D. Ullman. Computing iceberg queries

e�ciently. Technical report, Stanford DBGroup Technical Report, February 1997.

[10] P. Flajolet and G.N. Martin. Probabilistic counting algorithms for database applications. Journal of

Computer System Sciences, 31:182 { 209, 1985.

[11] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley Publishing

Co., Reading, MA, 1989.

[12] P.J. Haas, J.F. Naughton, S. Seshadri, and A.N. Swami. Selectivity and cost estimation for joins based

on random sampling. Journal of Computer and System Sciences, 52(3):550 { 569, June 1996.

[13] J.M. Hellerstein, P.J. Haas, and H.J. Wang. Online aggregation. In Proceedings of ACM SIGMOD

International Conference on Management of Data (SIGMOD'97), Tuscon, Arizona, June 1997.

[14] C. Jordan. The Calculus of Finite Di�erences. Chelsea (2nd edition), 1949.

[15] F. Olken. Random sampling from databases. Ph.D. dissertation, UC Berkeley, April 1993.

[16] J.S. Park, M.S. Chen, and P.S. Yu. An e�ective hash based algorithm for mining association rules. In

Proceedings of ACM SIGMOD Conference, pages 175 { 186, May 1995.

[17] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information Pro-

cessing and Management, 24(5), 1988.

[18] N. Shivakumar and H. Garcia-Molina. SCAM: A copy detection mechanism for digital documents.

In Proceedings of 2nd International Conference in Theory and Practice of Digital Libraries (DL'95),

Austin, Texas, June 1995.

21

[19] N. Shivakumar and H. Garcia-Molina. Building a scalable and accurate copy detection mechanism. In

Proceedings of 1st ACM Conference on Digital Libraries (DL'96), Bethesda, Maryland, March 1996.

[20] N. Shivakumar and H. Garcia-Molina. Computing replicas and near-replicas of documents on the web.

In To appear in Workshop on WebDatabases (WebDB'98), Valencia, Spain, March 1998.

[21] TPC-Committee. Transaction processing council (TPC). http://www.tpc.org.

[22] J.D. Ullman. Principles of Database and Knowledge-Base Systems (Volume 1). Computer Science Press,

1988.

[23] K. Whang, B.T. Vander-Zanden, and H.M. Taylor. A linear-time probabilistic counting algorithm for

db applications. ACM Transactions on Database Systems, 15(2):208 { 229, 1990.

[24] G.K. Zipf. Human Behavior and the Principle of Least E�ort. Addison-Wesley Press, Cambridge,

Massachusetts, 1949.

Analyzing UNISCAN for Zip�an Distribution

Suppose we are hashing n items I1, : : :, In, where item Ij has weight wj . (The items are the 2-itemsets and

the weights are their counts.) We have available memory of size m which is partitioned equally between k

hash tables, H1, : : :, Hk; thus, each hash table has a total of m=k cells available. Our goal is to determine

the optimal choice of k from the point of view of pruning away items of weight at most s (the support).

Recall that an item can be pruned away if any one of the hash table certi�es that it has weight at most s.

In any one hash table, if a particular cell has the property that the total weight of the items hashed into it

is at most s, then all items hashed to that cell can be certi�ed and pruned away.

Problem 1 How do we choose the k hash functions so as to prune away the maximum number of items?

How much pruning can we expect in the worst case as a function of the various parameters?

Such a worst-case analysis is a fairly di�cult theoretical problem, and we will ignore it for now. Instead,

we will assume that the item weights follow some pleasant distribution and perform an analysis on that

basis.

Assumption 1 We assume that the items weights, wj, are chosen independently from probability distribu-

tion p, i.e., that for 1 � x � d,

Pr[wj = x] = p(x):

2

There is no particular reason for assuming that the weights are integer-valued or that they are bounded by

d, as the following analysis generalizes quite easily to continuous and unbounded distributions.

We will also make the following assumption about the hash functions.

Assumption 2 We assume that the hashing is performed using k independent and completely random hash

function. 2

22

The second part of this assumption is unrealistic: that each hash table has associated a hash function which

assigns the n items to the cells in the hash table independently and uniformly at random. Later, we should

consider modifying the analysis to 2-universal (or, k-universal) hash functions that are actually used in

practice.

De�nition 9.1 (L)et E ij denote the event that the item Ij gets pruned by hash table Hi, i.e., that the cell

containing Ij in Hi has total weight at most s. Further, let Ej denote the event that item Ij gets pruned by

any of the k hash tables, i.e., Ej = [ki=1E
i
j . 2

De�nition 9.2 (L)et P = Pr[E ij] and note that P is independent of j and i by our assumptions. Then, it

follows that

Pr[Ej] = 1� (1� P)k:

2

Basically, we need to estimate P as a function of k. Note that the expected number of items pruned

away is given by nP . To this end, �rst note that the probability that exactly t items are mapped into the

same cell of Hi as Ij is given by

q(t) =

�
n� 1

t� 1

��
k

m

�t�1�
1�

k

m

�n�t
:

Given that there are exactly t items in this cell, let the probability that the total weight of this cell is at

most s be denoted by r(t). Thus, we obtain that

P =
nX
t=1

q(t)r(t):

It remains to obtain an expression for r(t), and clearly this depends on the distribution of the weights.

We assume that the item weights follow the simplest form of the Zip�an distribution, viz.,

p(x) =
c

x
:

Here the constant c is chosen to ensure that
P

x p(x) = 1, and it is clear that c � 1= lnd. In general,

the Zip�an distribution allows higher powers of x in the denominator, but that will only complicate the

expressions we obtain below without adding much by way of insight. So, we will stick with this simple form

of Zipf's Law.

Deriving a closed form expression for r(t) proves to be fairly tricky even in this simple case. Recall that

the probability generating function for a random variable X is de�ned as:

gX(z) =
X
x

Pr[X = x]zx:

When X follows that simple Zipf distribution,

gX(z) =
X
x�1

c

x
zx

= c
X
x�1

zx

x

= �c ln(1� z);

23

where the last expression can be derived as in [11, page 321]. Note that while we are assuming that the

weights are drawn from the range [1; d], in the preceding derivation we made the reasonable approximation

to the generating function by extending the summation to all x � 1.

We are really interested in r(t) which is the probability that the sum of t independent random variables

following the simple Zipf distribution will sum to at most s. Let Y be a random variable which is distributed

as the sum of t random variables with the simple Zipf distribution. We can obtain the probability generating

function for Y by taking the tth power of gX(z).

gY (z) = gX(z)
t

= [�c ln(1� z)]t

= ct
�
ln

1

1� z

�t

= ctt!
X
k�0

S(k; t)
zk

k!
:

The last expression can be derived as in [11, page 337], and the notation S(k; t) denotes the Stirling number

of the �rst kind. The probability r(t) that Y is at most s can be easily seen to be the sum of the �rst s

coe�cients in gY (z). We obtain that:

r(t) = ctt!
sX

x=0

S(k; t)
1

k!

= ct
t!

s!
s!

sX
k=0

S(k; t)
1

k!

= ct
t!

s!
S(s + 1; t+ 1);

where the last expression can be derived as in [11, pages 250-251].

We can bound the probability that element Ij gets pruned as follows:

Pr[Ej] = 1� (1� P)k

= 1�

1�

nX
t=1

q(t)r(t)

!k

= 1�

1�

nX
t=1

�
n� 1

t� 1

��
k

m

�t�1�
1�

k

m

�n�t
ct
t!

s!
S(s + 1; t+ 1)

!k

:

From this expression, plugging in an estimate for the Stirling number S(s + 1; t + 1), we will obtain the

desired probability. Actually, our goal is merely to determine the optimum choice of k which maximizes this

pruning probability. Unfortunately, there is no known closed-form formula for Stirling's approximation, but

it is possible to plot the curve and see where the maximum value lies.

However, we can complete the analysis for k under one simplifying assumption. We assume that each

cell that the jth element gets mapped into (i.e., the unique cell in each of the k hash tables) has exactly

the expected number of elements, kn=m. This gives a fairly good approximation since the summation in the

preceding expression is dominated by the term where t = kn=m. We now an asymptotic approximation for

24

Stirling's number of the �rst kind, S(s + 1; t+ 1), that is valid when t is small and held constant as s goes

to in�nity. This inequality, due to Jordan [14], states that:

S(s + 1; t+ 1) �
s!

t!
� (lnn +
)t;

where
 = 0:577::: is Euler's constant. Proceeding with the assumption that t = kn=m and using this

asymptotic estimate, we obtain that

Pr[Ej] � 1� (1� r(t))k

= 1� (1� ct
t!

s!
S(s + 1; t+ 1))k

� 1� (1� (c lnn+ c
)kn=m)k

� 1� (1� (c lnn+ c
)t)k:

It is now possible to estimate the e�ect of varying k on the degree of pruning obtained via the use of multiple

hash tables. Given the values of the other parameters, e.g., n and m, it is possible to determine the optimal

choice of k.

25

