
FASD: A Fault-tolerant, Adaptive, Scalable,

Distributed Search Engine

Amr Z. Kronfol
Princeton University

May 6, 2002

Abstract

This paper introduces FASD, a fault-tolerant, adaptive, scalable, and dis-
tributed search layer designed to augment existing peer-to-peer applications.
The FASD layer operates as a network of identical nodes that collectively
pool their storage space to cache “metadata keys” and cooperatively route
queries to the nodes most likely to satisfy them. A “metadata key” is a list of
weighted terms that describe the information content of a document in the
underlying network. Although completely decentralized, FASD’s approach
is able to efficiently match the recall and precision of a centralized search en-
gine. Simulation results indicate that latency and bandwidth consumption
scale logarithmically with the size of a FASD network.

Acknowledgments and Pledge

First and foremost, I thank my parents whose love, dedication, and support
saw me through the long and difficult journey culminating in this thesis.
Thanks also to Hania for bearing with her brother as he disappeared from
the face of the earth for long periods of time and to Ghada Dajani for your
continuing support. To all my friends, thank you for being there and offering
much needed escapes from the vortex this thesis threw me into. While on the
subject of escapes and distractions, I especially thank my roommates past,
present, and pseudo (Matt, John, Sam, Alex, Mike, Luke, Megan, Michele,
Lisa, Noël, and Adamma) for their antics and idiosyncrasies. Professor An-
drea LaPaugh deserves special recognition for her guidance and patience
throughout FASD’s evolution from vague idea to working simulation. I have
learned a great deal from you and I sincerely appreciate the many hours you
spent listening to the issues de jour. Additionally, I thank Professor Brian
Kernighan for the prompt and insightful feedback that was anything but
“näıve” and Professor Randy Wang for his laudable efforts in improving the
independent work experience. Thank you to all those in the Freenet devel-
opment community whose comments and criticism helped enhance FASD.
In particular, I thank Ian Clarke for inspiring this thesis and editing it with
an eye for the technical nuances that only someone intimately familiar with
peer-to-peer could bring to the table.

I hereby declare that this thesis represents my own work in accordance with
University regulations.

Amr Z. Kronfol

Contents

1 Introduction 4
1.1 Freenet: Strengths and Weakness 4
1.2 A Distributed Search Engine 5

2 Related Work 7
2.1 Centralized Search . 7

2.1.1 Napster . 8
2.1.2 Freegle . 9

2.2 Hash-based Index Distribution 9
2.2.1 Index Distribution using Chord 10

2.3 Broadcast . 10
2.3.1 Gnutella . 11

2.4 Freenet Described . 12
2.4.1 Requests . 12
2.4.2 Inserts . 14
2.4.3 Node Announcements 14
2.4.4 Data Stores . 15

3 Protocol and Architecture 16
3.1 Metadata Keys . 16
3.2 Requests . 17

3.2.1 Metadata Closeness 17
3.2.2 Query Routing . 20

3.3 Inserts . 23
3.3.1 Key Generation . 23
3.3.2 Insertion Routing . 24

3.4 Metadata Stores . 25
3.4.1 Inverted Indices for Efficient Search 25
3.4.2 Maintaining Consistency 25

CONTENTS 2

3.5 Metadata Security . 26
3.5.1 Avoiding Censorship 26
3.5.2 Closeness versus Quality 27

3.6 Node Announcements . 28
3.7 Adaptability . 29
3.8 Extensibility Beyond Freenet 29

3.8.1 Applying FASD to Chord 30
3.8.2 FASD as a Stand-alone Application 30

4 Simulation and Experimental Results 31
4.1 Simulator Details . 31

4.1.1 Bootstrapping . 32
4.1.2 Primary Metrics . 32

4.2 Growth . 35
4.3 Routing . 38

4.3.1 The Cluster Hypothesis 39
4.4 Adaptability . 39

4.4.1 Small-world . 41
4.5 Scalability . 43
4.6 Fault-tolerance . 45

5 Future Work 48
5.1 Improved Result Quality . 48
5.2 Enhanced Security . 48
5.3 Further Simulation . 49

6 Conclusion 50

List of Figures

2.1 Search and retrieval under the Napster model 8
2.2 Search and retrieval under the Gnutella model 11
2.3 Retrieval under the Freenet model 13

3.1 A metadata key for this paper 18
3.2 A document space in 3 terms 19

4.1 Bootstrapping in a lattice topology 33
4.2 Request pathlength versus network size 36
4.3 Distribution of request pathlengths 37
4.4 Comparing FASD routing to random routing 38
4.5 Request pathlength versus time 40
4.6 Characteristic pathlength and clustering versus time 42
4.7 Request pathlength versus network size (scalability) 43
4.8 Distribution of recall by shallow requests 44
4.9 Distribution of out-degrees . 45
4.10 Fault-tolerance under random failure and targeted attack . . 46

Chapter 1

Introduction

The evolution from the modem-based world to one of “always-on” broad-
band connectivity has seen a surge in the popularity of peer-to-peer1 systems
(see [32] for a good overview). This increase in popularity has spawned in-
teresting technical and social issues. For example, Gnutella [15, 18, 21, 36]
has experienced scalability problems and the courts shut down Napster [30]
due to alleged copyright violation. Freenet[8–10, 14] is an adaptive peer-to-
peer network that addresses some of these issues. Its developer, Ian Clarke,
envisioned an anonymous and decentralized paradigm that avoided a single
point of vulnerability for authoritarian (or benevolent) regimes to target.

1.1 Freenet: Strengths and Weakness

Notwithstanding the soundness2 and legal viability of Freenet’s political as-
pirations, its unique performance and security characteristics are important
on their own merit. The underlying algorithm adopts a meritocracy-based
routing and storage scheme whereby increased popularity of a data item
translates to more aggressive caching and lower retrieval latency. In light of

1Peer-to-peer is a contentious term encompassing any form of distributed computation.
A stricter interpretation might require a large network of clients that transmit and receive
information from one another without a mitigating server. The model is certainly not
novel, dating back to at least 1979 with the introduction of the Usenet system [29].

2In a recent article O’Reilly’s CTO Jon Orwant estimated that 15.6% of Freenet content
was pornographic and 53.8% fell into the broad category of sex, drugs, and rock and
roll [33]. In recent e-mail correspondence, Ian Clarke pointed out, “the research is very
out-of-date, the nature of content on Freenet has changed dramatically since those early
days, of course there is still ‘sex, drugs, and rock n’ roll’, but the percentage given bears
little relationship to reality now.”

Chapter 1: Introduction 5

the load problems experienced by world wide web servers during a denial of
service attack or a major news event (i.e. SlashDot effect [1]), this property
becomes very significant. Moreover, it is difficult for a malicious party to re-
move data from the network because the process of locating the data serves
to further replicate it. Andrew Shapiro [47] and Lawrence Lessig [27] have
argued that the Internet is evolving into an architecture of complete con-
trol. To the extent that it uses cryptography and strictly limited upstream
and downstream communication, the completely decentralized Freenet sys-
tem helps combat this disturbing trend. Although not completely immune
to eavesdropping, there is “good-enough” producer, consumer, and server
anonymity.

Freenet’s searching capability is not nearly as laudable. All data on the
network is identified by arbitrary GUIDs3 that users must discover through
out-of-band means. An internal mechanism that supports search4 does not
exist. Freenet’s inability to capture critical mass5 coupled with the fact that
85% [26] of web users depend on search engines suggests the restrictiveness
of this shortcoming. Integrated search capability is critical to the utility of
the network as a whole and imperative if Freenet’s unique qualities are to
become truly accessible.

1.2 A Distributed Search Engine

This paper presents FASD, a completely distributed search engine, designed
to enrich Freenet with search while not compromising scalability, anonymity,
or fault-tolerance. Although framed as an augmentation to the Freenet
model, FASD is applicable to other peer-to-peer systems and it could also
form the basis of a new, search-optimized architecture. Since Freenet’s strict
anonymity requirements prohibit a number of performance optimizations,
the results in this paper are an upper bound on latency and bandwidth
consumption. Section 3.8 discusses FASD’s broader applicability to any
application that could benefit from a search capability that is more scalable,
distributed, adaptive, or fault-tolerant.

3GUID is an acronym for globally unique identifier.
4Search is the ability to identify which documents match a given query string. For

example, in Freenet, it is impossible to identify which documents in the networks most
likely contain information about “apples AND oranges NOT bananas”.

5Ian Clarke estimates the number of downloads per day in Freenet at 5,000-10,000. Al-
though impressive for a system as young as Freenet, search capability is certainly necessary
if the system is to become more widely accessible.

Chapter 1: Introduction 6

FASD’s approach involves automatically generating a metadata key6—a
list of terms that describe the information content of a given document—
whenever an author inserts a document7 into the system. A closeness oper-
ator derived from classic information retrieval allows a FASD node to deter-
mine how closely associated the information content of two metadata keys
is (and thus how closely associated the information content of the underly-
ing documents is). Similarly, the operator allows a FASD node to determine
which metadata keys are closest to a given query (and thus which underlying
documents are closest to the given query). When storing a metadata key k,
a node also stores an associated “reference”—the address of a node likely
to specialize in requests for metadata key k. A node is said to specialize
in k if it contains documents whose metadata keys are close to k and if it
has references to other nodes likely to specialize in k. References define the
connectivity of a FASD network. Node i is connected to node j if node i
contains a metadata key whose associated reference is node j. A node for-
wards a request for query q or an insert of key k to the downstream neighbor
most likely to contain more metadata keys that are close to query q or key k.
This process continues until the hops-to-live8 of the message expires. The
nodes contacted in this process are said to form an insert or request chain.
Each node in an insert chain saves a local copy of the inserted metadata
key. Each node in a request chain caches a local copy of the keys closest
to the requested query before passing them upstream. Over time, FASD’s
consistent routing algorithm and aggressive caching scheme permit nodes
to “learn” how to better service requests for keys they are deemed likely to
specialize in.

The remainder of the paper is as follows: chapter 2 provides an overview
of the state of the art (including an in-depth discussion of the Freenet sys-
tem); chapter 3 presents the algorithms and protocol that comprise the
FASD distributed search engine; chapter 4 describes the simulation and ex-
perimental results; chapter 5 suggests directions for future work; concluding
remarks are in chapter 6.

6Ian Clarke first coined the term “metadata key” in an e-mail thread discussing future
directions for Freenet.

7Although only text data is currently supported, the approach is easily extended to
other media if authors are willing to manually generate metadata. In the popular MP3
format, album, genre, title, and artist information are already directly encoded into the
file using CDDB.

8The hops-to-live is the number of times a request or insert may be forwarded before
it expires.

Chapter 2

Related Work

The various search schemes in the current peer-to-peer landscape fall into
one of three broad categories—centralized search, hash-based index distri-
bution, and query broadcast. This chapter discusses each of these schemes
to conclude they are ad hoc, failing to match one or more of FASD’s pri-
mary characteristics—fault-tolerance, adaptability, scalability, and distribu-
tion. Section 2.4 provides an in-depth summary of the Freenet peer-to-peer
system which serves as the inspiration for FASD’s metadata key routing
algorithm.

2.1 Centralized Search

In its simplest form, centralized search is a three step process. The search
engine first identifies and aggregates all the document in the collection via
an automated process (e.g. web crawler) or manual entry. It then inserts the
documents into a data structure optimized for efficient search. Typically,
this consists of an inverted index: a list of terms in the collection and pointers
to documents that contain those terms. Finally, when processing a query,
the search engine retrieves from the index the set of documents containing
each query term. Depending on the Boolean operators (i.e. AND, OR, and
NOT) the result set is taken to be the union, intersection, or difference of the
individual sets.

Peer-to-peer systems may use a centralized index for document discovery.
In this model, nodes update the centralized index as they store or delete
documents. A user then sends queries to the central index and receives a
list of “hits”1 to the query. Each hit includes a pointer that permits the

1A document is a “hit” if its information content is close to the query. Often, a hit is
also assigned a rank describing how closely it matches the query.

Chapter 2: Related Work 8

a

b

Central Directory

2

1

6
5 3

Requester

Holder Of
Top Hit

c

4

Holder Of
Second Hit

Figure 2.1: Search and retrieval under the Napster model

user to retrieve the corresponding document. Ideally, the top hits will meet
the user’s information need.

2.1.1 Napster

In the peer-to-peer world, Napster’s was the most prominent use of a cen-
tralized index. Whenever a user stored an mp3 music file, his node contacted
the central directory and inserted the song title, artist name, genre, and so
on. Due to the limited amount of information describing a given song, Nap-
ster did not utilize the sophisticated2 weighting and matching techniques
necessary in more general information retrieval systems where documents
may be long and complex [44, 46].

Figure 2.1 depicts a typical search and retrieval scenario. (1) Node a
sends a query q to the central server. (2) The central server processes q
and returns to a a list of nodes containing hits. (3) Node a contacts the
node associated with the top hit, node b. (4) Node b transfers the song to
node a via a direct TCP/IP connection. However, the returned song does
not satisfy the user’s information need (e.g. it is truncated prematurely or
erroneously labeled). (5) Node a then contacts the node associated with the
second-best hit, node c. (6) Node c transfers the data to node a. The user
is satisfied with this hit and the search/retrieval process is complete.

As the approach of choice for web search engines, the centralized paradigm
2At the very least, these techniques need to account for the importance of a given term

in identifying a given document. For example, the term “the” is less useful in identifying
a document about “apples” than the term “fruit” is.

Chapter 2: Related Work 9

has benefited from substantial research into its scalability3 with respect
to storage and retrieval latency (see [6, 19, 24] for an overview). However,
Napster’s dependence on this model also had serious disadvantages. It in-
troduced a single point of failure: once the central server was shut down,
the still intact network was unable to function because data location and
peer discovery became impossible. Furthermore, this approach was prone
to the same load issues facing the traditional client/server model. Finally, a
user’s identity was exposed during queries and during download because of
the direct connection necessary for node-to-node and node-to-central-server
communication.

2.1.2 Freegle

There is an ad hoc searching mechanism for Freenet known as Freegle [13]
that utilizes a centralized search approach. Authors of Freenet documents
manually enter a description of their document and its Freenet GUID into
a centralized search index. Users then execute queries on the index and
retrieve the matching documents from the Freenet network using the asso-
ciated GUID. Although Freegle preserves download anonymity (GUID re-
quests in Freenet are anonymous), it exposes the user’s anonymity during
the query process. More significantly, should the central search server be-
come disabled4, Freegle would render Freenet’s fault-tolerance, scalability,
and decentralized properties a moot point to users dependent on search.

2.2 Hash-based Index Distribution

The fundamental primitive in a hash-based peer-to-peer systems is lookup,
a function that returns the node responsible for storing data with a given
GUID [25, 37, 50]. Chord [50] implements this function using a consistent
hash [22] with some extra5 routing information for improved efficiency. A
consistent hash’s ability to change minimally as the range of the function
changes is critical in the transient world of peer-to-peer. The Chord system
guarantees O(log N) running time for its lookup function where N is the

3For example, the Google search engine conducts more than 150 million searches per
day on an index of over 2 billion web pages [17].

4Targeted attack, court injunction, or overload might disable the central server.
5For minimal performance, each Chord node need only be aware of its successor node

on the identifier circle [50].

Chapter 2: Related Work 10

number of nodes in the network6.

2.2.1 Index Distribution using Chord

There has been some discussion in [50] of a distributed search application of
the Chord framework. In this model, the node given by lookup(t) main-
tains a list of all documents in the network containing the term t. When
processing the the query Q = t0, the requesting node i contacts node j where
j = lookup(t0). Node j then transfers a list of all documents containing the
search term t0 to node i. In this particular scenario, Chord seems to offer an
O(log N) distributed search. An immediate issue is term popularity—some
index terms may be very popular and, as such, could drive an unsupport-
able amount of traffic to a single node (or small set of nodes). Developing
a load balancing mechanism that breaks up and distributes the indices for
popular terms is non-trivial. However, there are more fundamental flaws in
this search model. Insertion of a document D = t0, t1, . . . , tm with m unique
terms requires m lookup calls, resulting in a debilitating amount of network
traffic (m log N messages). Complex Boolean queries are also prohibitively
expensive. To satisfy a query in the form q = t0 AND t1 AND . . . AND tm
the requester must execute m lookup calls, download m potentially large
indices, and determine the intersection of m potentially large result sets.
Chord’s architecture does not effectively distribute the computation neces-
sary for document insertion and query execution—the onus is on the initiat-
ing node to coordinate the process using a prohibitive amount of bandwidth
in lookup calls and file transfers.

2.3 Broadcast

In the broadcast approach, each node searches its local index for a given
query and then forwards the query to all of its neighbors. The HTL (hops-
to-live) of the query indicates its depth or search horizon. Once the HTL
has expired, nodes no longer broadcast the query further downstream. Each
node passes its hits back to the initial requester who then selects which
documents to download. The broadcast system amounts to breadth-first
search with cutoff.

6To achieve O(log N) lookup performance, each node maintains routing information
for O(log N) other nodes. Additionally, O(log2 N) messages are required to preserve the
network’s consistency on node entry and exit [50].

Chapter 2: Related Work 11

a

b c de

f

g
h i j

k

l

m

1 1 1

2

2
2 2 2 2 2

2

2

3

4

Requester

Responder

3

Responder

3

3

Figure 2.2: Search and retrieval under the Gnutella model

2.3.1 Gnutella

Gnutella is a network of equal peers that selectively respond to queries. Each
node attempts to establish a number of simultaneous connections to other
nodes that constitute its neighbor set.

Figure 2.2 depicts a typical search and retrieval scenario. (1) Node a
broadcasts a query q to all nodes in its neighbor set N . (2) Each node in
N forwards q to its neighbors. (3) Any node able to satisfy q (in this case
nodes e and m) returns via the request chain a brief description of its hits
to node a. (4) After reading the descriptions, the user chooses to download
one of the hits returned by e (via direct TCP/IP connection). The user is
satisfied with this hit and the search/retrieval process is complete. Had the
user been unsatisfied, he could retrieve any of the other hits in e’s result set
or m’s result set.

The Gnutella protocol does not specify how nodes must process incom-
ing queries. Thus, it is well-suited for search across heterogeneous data
sources. For example, when evaluating the query string “1+1”, one node
might recognize a mathematical expression and return “2”, another might
return results from a news database, and so on. To the extent that it is
difficult to determine whether an upstream node is forwarding or initiating
a query, there is query anonymity. However, due to the direct connection
between peers during file transfer, there is no download anonymity.

Studies [21, 36] indicate that Gnutella’s search mechanism does not scale.
Every query reaches an exponentially increasing number of nodes and gen-
erates a prohibitive amount of network bandwidth. There has been some
work incorporating hub nodes called reflectors or super peers into the net-
work [23]. These super peers are broadband servers that cache incoming

Chapter 2: Related Work 12

queries and prevent them from propagating further. This is a flawed so-
lution because it introduces identifiable points of failure into the network,
requires a central managing authority, and is vulnerable to the SlashDot
effect.

2.4 Freenet Described

Freenet is an adaptable network of nodes that agree to maintain a local
data store of information. Files in the system are identified by arbitrarily
generated GUIDs7. There is no semantic correspondence between a file
and its GUID. Nodes forward GUID requests to the downstream neighbor
deemed most likely to contain close GUIDs. Closeness, in this case, is not
semantic but mathematical with the closeness of GUID i to GUID j simply
defined as |i − j|. When caching a document with GUID i, a node also
stores an associated “reference”—the address of a node likely to specialize in
requests for GUID i. A node is said to specialize in i if it contains documents
whose GUIDs are close to i and if it has references to other nodes likely to
specialize in i. References define the connectivity of the Freenet network.
Node i is connected to node j if node i contains a GUID whose reference is
node j.

The Freenet routing algorithm can efficiently locate documents in time
proportional to O(log N) where N is the size of the network8. Further-
more, Freenet’s aggressive caching scheme avoids the SlashDot effect. Since
popular data is widely replicated, it does not introduce bottlenecks into the
network. Finally, the strictly limited upstream and downstream communica-
tion coupled with data encryption protects producer, consumer, and server
anonymity.

2.4.1 Requests

If a node has the data corresponding to the requested GUID i, it returns the
file to the upstream requester. Otherwise, it identifies the closest GUID to
i in its data store and routes the request to the node listed as the reference.
When a document is found, it is passed up the requesting chain to the
original requester. Each intermediary node caches a local copy and lists
the source node as reference. To preserve server anonymity, any node along

7Currently, an SHA-1 hash is used to calculate the GUID.
8Freenet has average case performance of O(log N). Unlike Chord, it does not make

any guarantee as to worst-case performance. In the worst-case, some requests might need
to visit every node in the network before locating the requested document [18].

Chapter 2: Related Work 13

a
b

c

d

f

e

1
2
3

Requester

Data Holder

5

6
7

8

9
10

11

12

4

Figure 2.3: Retrieval under the Freenet model

the chain can arbitrarily declare itself as the reference, preventing upstream
clients from learning the original location. Note that the more popular a
document is, the more widely replicated it will be in the network. Freenet’s
routing is equivalent to hill-climbing local search.

A unique message identifier allows nodes already in the request chain
to recognize loops and inform their upstream requester9. In this case, the
upstream requester looks up its next closest key and contacts the associated
reference node. Should a node exhaust its candidate list, it sends a failure
reply to its predecessor. The predecessor then contacts the reference node
of its next closest GUID. Nodes continue to forward messages until the
document is found or the message’s HTL (hops-to-live) expires.

Figure 2.3 describes document retrieval in this model. (1) Node a issues a
request for GUID i to node b. (2) Node b does not hold the data, searches its
data store for the closest GUID to i and routes to the associated reference,
node c. (3) Node c does not hold the data, has no further candidates to
route to, and backtracks the request to node b. (4) Node b searches its
data store for next closest GUID to i and routes to the associated reference,
node d. (5)(6) The request passes from node d to e and back to b without
success. (7) Node b detects a loop and backtracks the request to node e.
(8) Node e has no further candidates to try and backtracks the request to
node d. (9) Node d routes the request to its next closest neighbor, node f ,
and the data is found. (10)(11)(12) The data is passed up the requesting
chain with nodes a, b, and d caching a local copy and listing node f as the

9Nodes may forget about pending requests after a period of time to keep message
memory free.

Chapter 2: Related Work 14

reference.

2.4.2 Inserts

Inserts in Freenet are analogous to requests. First, the author computes a
proposed GUID for the new document by taking its content hash10. The
author’s node then issues a request for the proposed GUID to determine
if it is already in use. If there are no collisions (i.e. a duplicate document
does not exist), the authoring node sends an insert message which is routed
in precisely the same way as the request (including backtracking). Each
intermediary node caches a local copy of the new document and lists the au-
thoring node as the reference. Nodes continue to forward an insert message
until its hops-to-live expires. To preserve producer anonymity any node in
the chain may arbitrarily declare itself as the reference, preventing down-
stream clients from learning the author’s identity. Note that, in the event of
a collision when trying to insert a new document, the original file is passed
upstream just as in a request (i.e. caching along the chain). Thus, a failed
insert still serves to propagate the original file.

The insert mechanism provides a supplementary method by which new
nodes can announce themselves to the network. It also improves the net-
work’s adaptability by placing documents in nodes expected to store them.
Finally, it is difficult for malicious parties to displace popular files with
dummy files under the same GUID. The insertion of the dummy will likely
fail (because of collision) and serve only to propagate the original file.

2.4.3 Node Announcements

A new node i forms connections into an existing network by starting with a
small set of initial GUIDs and associated references obtained through out-of-
band means11. A node announcement protocol is necessary so that existing
nodes become aware of i and form connections to it. Specifically, existing
nodes must consistently list i as the reference for some specialization GUID.
For node adaptation to occur, existing nodes must list i under the same
specialization GUID (see section 2.4.3). For security reasons, node i should
not unilaterally decide which GUID it will specialize in. To reconcile the
goals of consistency and security Freenet utilizes a collaborative random
number generator that any one node cannot influence.

10This is a simplification of the current Freenet implementation in which there are
different types of GUID. See [9] for details.

11For example, the Freenet home page or e-mail lists.

Chapter 2: Related Work 15

A new node i generates a random seed and hashes it to create a com-
mitment. It then forwards an announcement message containing its address
and commitment to a node in the network. This node generates a random
seed, XORs it with the commitment it received, and then forwards the new
commitment to a random reference in its data store. This continues until
the HTL of the message expires, at which point each node reveals its ran-
dom seed. Node i’s specialization GUID is taken to be the XOR of all the
random seeds. Each node adds an entry in its data store for node i under
this specialization GUID. Since the final result is an XOR of random seeds
that can be verified using the final commitment, it is impossible to influence
the specialization GUID without control of a large part of the network.

Adaptability

Over time, the network organizes itself to improve its retrieval accuracy.
Consider a new node i expected to specialize in GUID j. Since node i
will be listed as the reference for j in routing tables, it will mostly receive
requests for GUIDs close to j. Initially, i’s data store will consist of arbitrary
GUIDs and references obtained via out-of-band means. However, with each
successful request passing through it, node i will cache another document
close to j and store a reference to a downstream neighbor storing at least
one document close to j. Thus, adaptability occurs on two levels: nodes
cache documents close to their specialization GUID and form connections
to other nodes specializing in similar GUIDs.

2.4.4 Data Stores

Aggressive caching in a world of finite disk space necessitates a culling mech-
anism. Accordingly, Freenet implements its data store structure as a limited
stack. Documents that are not requested move to the bottom of the stack
and have their data culled. If a document continues to be unpopular, even
the GUID and reference are purged. This least-recently-used policy is an
explicit trade-off that sacrifices unpopular (and unimportant?) data to en-
sure the most popular (and important?) data is widely replicated. Freenet
makes no guarantee as to how long a file will remain in the system.

All Freenet files are encrypted. Coupled with the fact that GUIDs have
no semantic meaning, file encryption permits node operators in a censoring
regime to “plausibly deny”12 any knowledge of their data store contents. De-
cryption keys are distributed to end users at the same time as the document
GUID.

12The legal strength of this argument is questionable. Node operators could still be
found to have vicarious or conspirator liability.

Chapter 3

Protocol and Architecture

FASD draws heavily on Freenet’s routing algorithm because of its fully dis-
tributed, fault-tolerant, and scalable characteristics. The only other peer-to-
peer offering that delivers this combination—Chord’s hashtable model—is
ill-suited for distributed search (see section 2.2 for details). FASD’s ap-
proach is to introduce a new type of automatically generated primitive—a
metadata key—into the network1. Modifying Freenet’s routing, caching,
and data store algorithms permits FASD to support search on metadata
keys while integrating seamlessly into the existing Freenet network. Sec-
tion 3.8 discusses FASD’s extensibility beyond Freenet to other peer-to-peer
architectures.

3.1 Metadata Keys

In classic information retrieval, documents are modeled as vectors in the
dimensionality of the lexicon2. Each entry in the term vector corresponds
to the weight of the term in the document. For example, consider a lim-
ited lexicon with only three terms—“apples”, “bananas”, and “oranges”. A
document’s term vector might be ~d = (13.7, 43, 0). ~d suggests that the doc-
ument is mostly about “bananas”, mentions “apples”, and does not discuss
“oranges”. To determine wd,t, the weight of term t in document d, FASD
adopts a standard measurement known as “TFIDF”3 [20]:

wd,t = log2(N/ft) log2(1 + fd,t) (3.1)
1As section 3.3.1 indicates, metadata keys must be generated before the document is

encrypted.
2A lexicon is a list of all the unique terms that appear in a document collection.
3TFIDF is an acronym for term frequency × inverse document frequency.

Chapter 3: Protocol and Architecture 17

where N is the number of documents in the collection, ft is the number of
documents in the collection that contain term t, and fd,t is the frequency
of term t in document d. The expression log2(N/ft) in (3.1) captures the
“resolving power”4 of term t [46]. It ensures that common terms will have
a lower resolving power than rarer terms (e.g. “the” should have a lower
resolving power than “aardvark”). The expression log2(1 + fd,t) in (3.1)
describes the importance of term t in document d. It ensures that a term
occurring very frequently in the document will not overpower a less frequent
one with higher resolving power.

FASD’s metadata keys are based on the vector representation of docu-
ments. A metadata key for document d is a list of the nonzero entries in
d’s term vector. Additionally, each metadata key includes a pointer to the
actual document. After receiving metadata keys in response to his query,
the user may fetch the actual document from the underlying network using
the associated pointer.

Figure 3.1 provides a metadata key for this paper5. Based on (3.1), it is
not surprising that “fasd”, “metadata”, “htl”, etc. are weighted so heavily—
these terms occur frequently in this paper and have a high resolving power
(because they occur infrequently in the English language). The sample
metadata key in the figure is designed for a FASD network operating on
top of Freenet. As such, the pointer component consists of a GUID and a
decryption key. If a user wished to retrieve the actual text of this paper, he
would issue a Freenet request for GUID 89456 and decrypt the data with
the cipher key 18234.

3.2 Requests

3.2.1 Metadata Closeness

Clarke’s initial design of Freenet abstracts itself from any particular key
implementation [8]. As long as “closeness” can be defined for a given key
type, Freenet’s adaptive routing approach should function. In Freenet, a
concept of closeness is necessary to determine which of GUID a or b is
closer (or equal) to the requested GUID c. Similarly, in FASD, a concept
of closeness is necessary to compare metadata keys with one another and
with queries. A consistent closeness operator should send queries to nodes

4The resolving power of a term is its usefulness in helping distinguish one document
from another. It is also referred to as the term’s discrimination value.

5The figure contains only the top ten entries of the metadata key. This paper contains
over 14,000 words and 13,000 unique words.

Chapter 3: Protocol and Architecture 18

GUID : 89456
Decryption Key : 18234

fasd 122.44
metadata 67.63
htl 67.21
napster 54.49
gnutella 50.99
freenet 48.14
peer-to-peer 42.58
small-world 42.17
freegle 36.32

. .

. .

. .

Figure 3.1: A metadata key for this paper

that contain metadata keys matching the query. It should also route new
metadata keys to nodes expected to store them.

Freenet mathematically defines closeness of two GUIDs as their abso-
lute difference. Given the multi-dimensional nature of a term vector, a
more sophisticated closeness operator is necessary for metadata keys and
queries. FASD adopts a standard measure known as the “cosine correlation
value” [44]:

cos ~di, ~dj =
~di · ~dj

‖~di‖‖~dj‖
=

∑t
k=1(ti,k · tj,k)√∑t

k=1(ti,k)2 ·
∑t

k=1(tj,k)2
(3.2)

where ~di, ~dj are the term vectors being compared and ti,k, tj,k describe the
weight of term k in the respective vector. The cosine correlation describes
the angle between document vectors in a t-dimensional space where t is the
number of entries in the lexicon (i.e. the size of the vocabulary). Figure 3.2
depicts document vectors in a space of 3 terms. The weights of the terms
in the vector determine its magnitude. In the figure, ~d2 is more similar to
~d1 than ~d3 because θ(~d1, ~d2) < θ(~d1, ~d3). The cosine correlation utilizes the
angle between documents so as to normalize against longer documents being
incorrectly favored.

Chapter 3: Protocol and Architecture 19

t2

t1

t3

t11,t12,t13)d1=(

t21,t22,t23)d2=(

t31,t32,t33)d3=(

Figure 3.2: A document space in 3 terms

Vector representation of queries

Simple queries in the form q = t0 AND t1 AND . . . AND tm may also be ab-
stracted into term vectors. q’s term vector is obtained by setting the weight
of q’s terms to be 1. Thus, given the sample lexicon:“apples”, “bananas”,
and “oranges”, the vector representation of the query “apples AND oranges”
would be ~q = (1, 0, 1). By abstracting queries into vectors, FASD uses the
closeness operator in (3.2) for comparing metadata keys to one another and
for comparing metadata keys to queries. Note that substituting q’s term
vector ~q for ~dj in (3.2) gives ~di’s “score” or “similarity” with respect to q.
Section 3.2.2 discusses how FASD processes complex queries.

Thus, (3.1) provides FASD with the framework to route queries and
metadata keys. Given two metadata keys i and j, FASD determines which
is closer to a given query (or metadata key) q by comparing the cosine
correlation measure of i’s term vector and q’s term vector and of j’s term
vector and q’s term vector. The larger the cosine correlation value, the
more closely associated is the information content of the given term vectors.
Equality occurs when the cosine correlation of two metadata keys is 1 and
the pointers are identical. The stricter definition of equality is necessary in
the event that two documents are very similar but not identical6.

6This might occur due to the use of stemming algorithms [44], stop-word removal [44],
and culling of the least distinguishing terms.

Chapter 3: Protocol and Architecture 20

3.2.2 Query Routing

In responding to user queries, FASD needs to return a ranked list of the
top n hits (i.e. the n metadata keys whose vector representation is closest
to the query’s vector representation). Freenet’s routing protocol has mini-
mal support for the sophisticated caching and node-to-node communication
necessary to collaboratively locate hits and transfer them to the end user.
FASD utilizes a routing algorithm, Process-Query, that forwards queries
downstream and returns multiple hits upstream while addressing bandwidth
and security concerns.

Process-Query(q, bestScores)
1: if Seen(thisMessage) then
2: return NIL {Notify upstream node of loop}
3: end if
4: results←Get-Top-Hits(q)
5: oldScores← bestScores
6: Update-Scores(bestScores)
7: i← 0
8: candidateNode←NIL
9: addedResults←NIL

10: while HTL 6= 0 do
11: if i ≥ results.length then
12: break {Ran out of candidates, backtrack upstream}
13: end if
14: candidateNode← results[i].refNode
15: addedResults← candidateNode.Process-Query(q, bestScores)
16: Update-Results(results,addedResults)
17: Update-Scores(bestScores)
18: i← i + 1
19: end while
20: Cache(results)
21: return Filter-Results(oldScores, results)
*Note that candidateNode.Process-Query(q, bestScores) is a remote procedure call.

The update functions used in Process-Query preserve two invariants.
Update-Results guarantees that results is a list of the top n metadata
keys encountered at, or deeper than, the current depth in the request chain.
Update-Scores ensures that bestScores is a list of the top n scores en-
countered at any point in the request chain. Thresholding the result set

Chapter 3: Protocol and Architecture 21

is necessary because a short query might generate thousands of hits. It is
justified to the extent that 85% of web users are unwilling to examine more
than the first few tens of results [6].

On receiving a query q a node i invokes the Get-Top-Hits function
which returns a set results of the n metadata keys in i’s store closest to the
vector representation of q. results is sorted in descending order such that
the top hit will appear at the top of the list. i will forward q based on the
references7 of the metadata keys in results. The reference of the top hit is
the best candidate, the reference of the second hit is the second-best candi-
date, and so on. After calling its update functions, node i passes the query
and the current list of best scores to the best downstream candidate. When
the downstream node returns the request to node i, i re-invokes its update
functions and forwards q along with the the current list of best scores to the
second-best candidate. As with regular Freenet requests, forwarding contin-
ues until the HTL expires. Unlike a Freenet request, a FASD request will
never complete before the HTL expires because it is impossible to determine
whether the current set of results is globally optimal.

Prior to returning upstream, node i invokes Filter-Results to ensure
that only metadata keys with scores greater than those in oldScores are
transferred. FASD’s use of Filter-Results reduces bandwidth consump-
tion significantly and prevents upstream nodes from caching metadata keys
that only weakly satisfy the query. Node i may also arbitrarily declare itself
as the reference for any of the keys it passes upstream so as to protect the
server anonymity of downstream nodes.

A unique message identifier allows nodes to detect loops in the request
chain and notify the upstream requester that it should contact a different
candidate8. Should a node run out of candidate nodes, it backtracks the
request up to its predecessor. Nodes store a local copy of all metadata
keys passed upstream in a least-recently-used cache. Since a node cannot
determine whether an upstream requester is initiating or forwarding a query,
the routing mechanism preserves query anonymity. The retrieval of the
actual document occurs via the standard Freenet request mechanism using
the GUID and decryption key given in the metadata key. Thus, to the extent
that Freenet does so, FASD also preserves download anonymity.

7Recall that reference for metadata key i is the address of a a node likely to specialize
in requests for i.

8Nodes may forget about pending requests after a period of time to keep message
memory free.

Chapter 3: Protocol and Architecture 22

Complex Queries

FASD’s algorithm is easily extended to complex queries. When processing
a complex query, FASD breaks it up into a disjunction of conjunctions. For
example, converting the query q = ((t1 OR t2) AND t3) into a disjunction of
conjunctions yields q = ((t1 AND t3) OR (t2 AND t3)). FASD draws on stan-
dard techniques from first-order logic to convert any complex query into a
disjunction of conjunctions [39].

To understand how FASD routes queries in this form, consider the query
q = (q1 OR q2) where

q1 = (t1 AND t2 NOT t3)
q2 = (t4 AND t5)

To process q the user’s node would issue separate FASD queries correspond-
ing to the two conjunctive clauses q1 and q2. Let R1 and R2 represent the
result sets for q1 and q2 respectively. The final result set for q is simply
(R1 ∪ R2). FASD routes q1 and q2 independently because there there is no
guarantee that a node specializing in q1 will also specialize in q2. In pro-
cessing q1, Get-Top-Hits retrieves all metadata keys that match the query
“t1 AND t2” and then removes any keys that contain the NOTed term t3.

Performance Optimization

Latency in distributed applications is proportional to the number of hops
a message consumes before returning to the requester. Metadata routing
requires an explicit trade-off between performance and recall (section 4.1.2
defines these evaluation criteria). Setting a larger HTL helps ensure that
the closest metadata keys are located while a lower HTL decreases response
time. Although this paper concerns itself with an upper bound on FASD’s
latency, a number of routing optimizations are possible. For example, iter-
ative deepening [40] could reduce response time without sacrificing quality.
In this model, the initiating node first sends out a shallow (small HTL)
query and presents the results to the user. As the user peruses these results,
his node sends out a deeper request to extract hits that might be further
downstream. To save bandwidth and ensure that only better metadata keys
are returned, the deeper request includes the scores from the shallow re-
quest. A production level roll-out of FASD should certainly concern itself
with further optimizations to reduce latency and bandwidth consumption.

Chapter 3: Protocol and Architecture 23

3.3 Inserts

3.3.1 Key Generation

When an author inserts a new document d into the Freenet system, his node
must automatically generate a corresponding metadata key. Key generation
occurs on document insert because this is the only time the document exists
in unencrypted form. Note that the author does not manually enter any
information during the key generation process. Automatic generation im-
proves usability and ensures that all documents are described consistently
across the FASD layer.

Calculating the weight wd,t of each term t in document d as per (3.1) is
prohibitively expensive. It would require retrieving and processing all the
(encrypted) documents in the Freenet system to determine the discrimina-
tion value of each term t in d. FASD circumvents this issue by precomputing
the resolving power of each term in the lexicon of a representative9 document
collection10. When a FASD network is first created, the standard Freenet
insert mechanism is used to distribute the precomputed lexicon. Given the
lexicon’s expected popularity and the nature of Freenet’s insert mechanism
(see section 2.4.2), it is highly unlikely that a malicious party could suc-
cessfully insert a “dummy” document under the same GUID as the lexicon.
Before generating a metadata key, an authoring node will request the lexi-
con file11. It then parses document d and generates its metadata key. The
precomputed resolving powers from the lexicon are substituted into (3.1).

In order to avoid artificial differences between documents that would
diminish the accuracy of (3.2), a given term’s resolving power must be con-
sistent across the network and over time. Thus, once a lexicon with pre-
computed discrimination values has been distributed into the system, it can
no longer be altered. A static lexicon is an acceptable restriction because
the slow evolutionary rate of language suggests the resolving power of a
given term is unlikely to change dramatically over time. If a document d
contains a term t that is not in the lexicon (e.g. an obscure name or a new
acronym), t is arbitrarily assigned the largest possible resolving power12 be-

9Given a sufficiently large representative document collection, the estimated discrimi-
nation values should be accurate.

10The FASD simulation uses the Online Book Initiative’s 600 MB document collection
consisting of everything from web pages to recipes to news articles to complete texts [31].

11Since the lexicon is requested at every document insert, it will be widely replicated.
Thus, it should be stored at the author’s node or within a minimal number of hops.

12Specifically, the resolving power of term t not in the lexicon is taken to be log2 N
where N is the size of the representative document collection. This value is based on (3.1)
and the assumption that ft, the number of documents in the collection containing t, is 1.

Chapter 3: Protocol and Architecture 24

cause it is probably very useful in differentiating d from other documents in
the collection.

There is a risk that the lexicon may consume too large a portion of nodes’
data stores. In specific, a multilingual document collection such as Freenet’s
contains a far greater number of unique terms than a unilingual one. FASD’s
solution is to segment the document space by language. In lieu of one
large multilingual lexicon, FASD utilizes smaller unilingual ones based on
representative document collections in the corresponding language. Authors
retrieve the appropriate language’s lexicon when generating a metadata key.
In this model, requesters indicate the language of their query to ensure that
only keys generated from the relevant lexicon are compared and returned.
The GUID for each language’s lexicon is explicitly specified in the protocol
to ensure universal access. If further compression on a lexicon is necessary,
the terms with the lowest discrimination values may be dropped. Although
preliminary tests suggest that dropping the least discriminating terms from
the lexicon does not result in any significant degradation of result quality,
further research is necessary.

3.3.2 Insertion Routing

After generating the metadata for document d, an author invokes a Freenet
insert (see section 2.4.2) of d. If the insert is successful (i.e. another doc-
ument with d’s GUID key does not exist), then d’s metadata key is in-
serted. Routing is provided by the Process-Query function using the
query q = t1, t2, . . . , tn where ti is the ith entry in d’s metadata key and n
is the total number of terms in d’s metadata key. Each node in the request
chain caches a local copy and lists the authoring node as the reference. To
preserve producer anonymity any node in the chain may unilaterally declare
itself as the reference. The insertion scheme has three important benefits.
Most importantly, Freenet metadata keys are inserted at different locations
from the documents they describe, mitigating the high security risk that
unencrypted metadata keys pose. An attack targeting metadata keys will,
at worst, cripple FASD and reduce the augmented Freenet network to sta-
tus quo ante (i.e. the integrity of GUID requests and inserts is maintained).
Furthermore, using Process-Query accelerates the network’s adaptability
by placing a new metadata key k in nodes expected to specialize in queries
close to k. Finally, the insertion mechanism provides an additional means
for authoring nodes to announce their presence to existing nodes.

Chapter 3: Protocol and Architecture 25

3.4 Metadata Stores

Metadata keys and their references are stored in a stack data structure. Keys
that are frequently accessed (i.e. regularly passed upstream in response to
queries) remain at the top of the stack while less popular keys move to the
bottom and are ultimately culled.

3.4.1 Inverted Indices for Efficient Search

In order for a node j to route a query (or metadata key) q appropriately it
must determine the cosine correlation value of q and each metadata key ki

in its store. Directly computing (3.2) would require time proportional to the
cumulative length of all metadata keys in the data store. Accordingly, each
FASD node maintains a supplementary inverted index to permit efficient
query processing. An entry in the index for a given term t has the form:

< t; [(k1, wk1,t), (k2, wk2,t), . . . , (km, wkm,t)] > (3.3)

where ki is a pointer to the ith metadata key containing t, wki,t is the weight
of t in ki’s vector representation, and m is the total number of metadata
keys in j’s store containing t. Standard algorithms for search on an inverted
index that execute in time proportional to the query length are given in [45].

Since nodes cache and cull metadata keys very frequently, the inverted
index must support efficient add/delete operations. Although efficient dy-
namic update is not possible in large search engines [19], it is possible in
FASD because of the relatively small size of any one node’s metadata store.
FASD maintains each inverted index entry as a sorted list. Thus, insertion
and deletion of a metadata key k with ‖k‖ terms occurs in O(‖k‖ log(‖k‖))
time. Further optimization is possible using batch processing that only ex-
ecutes when a node is idle.

3.4.2 Maintaining Consistency

The dynamic nature of metadata and data storage may give rise to two pos-
sible inconsistencies in the network vis-à-vis a document d and its metadata
key k:

1. k may be purged while d remains

2. d may be purged while k remains

Chapter 3: Protocol and Architecture 26

The first inconsistency is remedied by requiring any direct requester of d to
periodically re-generate k and re-insert it into the metadata layer. A direct
requester is a user who accesses d without going through the FASD engine
(i.e. learns d’s GUID key through out-of-band-means or follows a link to
d). Periodic re-generation and re-insertion offers a reliable guarantee that
the metadata keys of frequently accessed documents will exist in the FASD
network.

FASD remedies the second inconsistency (essentially a “HTTP 404: File
Not Found” error) using “cull requests”. If a node n suspects that d no
longer exists (i.e. d was not retrievable within a reasonable number of hops),
it notifies downstream nodes to cull k. The request is routed using the query
q = t1, t2, . . . , tm where ti is the ith term in k and m is the total number of
terms in k. On receiving a cull request, a node first issues a request for d
to verify the legitimacy of the request. If d is found, the downstream node
returns an “illegitimate cull” error upstream. Otherwise, the cull-request
is considered legitimate and routed downstream. If all nodes in the chain
agree that the cull is legitimate, an “all clear” is sounded and k is removed
from each node’s metadata store. The metadata cull mechanism enhances
FASD’s security and adaptability. An illegitimate cull by a malicious node
attempting to censor k not only fails to remove k from any downstream data
stores but also causes further replication of d. An illegitimate cull issued
by a trustworthy node n will help bring the desired document d within n’s
search horizon.

3.5 Metadata Security

FASD’s lack of encryption coupled with its unsophisticated ranking tech-
niques gives rise to a number of difficult security issues. This section identi-
fies these issues, provides ad hoc solutions, and suggests directions for future
research.

3.5.1 Avoiding Censorship

Process-Query provides some protection against query censorship. As-
sume that a malicious node m wishes to censor a certain query q. Since
queries are unencrypted, node m can detect when it receives a request con-
taining q. At this point, the most damage node m can inflict is to allow q
to propagate downstream until its HTL expires and then refuse to pass any
results upstream. m cannot dilute the results already found by upstream
nodes because Update-Scores ensures that the final result set consists of

Chapter 3: Protocol and Architecture 27

the top n results encountered at any point in the request chain. Further-
more, should the end-user suspect censorship, he could attempt to circum-
vent node m altogether. In lieu of routing q to the reference associated
with its best hit, his node would route q to the reference associated with
its second-best hit. The user’s node could continue to iterate through this
process (i.e. routing to the reference associated with the third-best hit and
so on) until the user’s information need was satisfied. In bypassing the cen-
soring node and passing relevant results back to the user, this circumvention
process leads to wider replication of keys close to the censored query. Thus,
in attempting to censor q, node m might inadvertently cause metadata keys
satisfying q to become more widely replicated.

Further investigation into the applicability of cryptographic search algo-
rithms [25, 49] to a more robust metadata routing framework is necessary.
These techniques might enable a scenario in which an untrusted node com-
putes the similarity of an encrypted query to an encrypted metadata key
without ever gaining knowledge of the semantic meaning. An encrypted
approach would curtail censorship and protect node owners with a plausible
deniability clause vis-à-vis the contents of their metadata stores. Unfor-
tunately, it is not obvious how to update an encrypted inverted index as
encrypted metadata keys are added and removed [49]. Currently, the tech-
niques in [49] only work in situations where Alice is searching through data
that she herself has encrypted and stored with Bob. In a distributed envi-
ronment, this paradigm poses a significant “chicken and egg” problem: the
querying user must somehow gain knowledge of the keys used to encrypt the
hits to his query.

3.5.2 Closeness versus Quality

There is a distinction between the quality of a result and its closeness to the
query q in document space [11, 16, 42]. Closeness is objectively defined by
(3.2) whereas quality is a subjective measure of a result’s ultimate utility
to the end user. Consider a document d comprised entirely of n instances
of the term t. d will be extremely close to the query q = t but of minimal
utility to the end-user. A search technique based entirely on (3.2) does not
adequately incorporate other indicators of quality. Such indicators include
reputation of the document source, update frequency, popularity or usage,
and citation [6, 7, 17, 34]. The Google search engine very successfully adopts
these techniques. In particular, its PageRank algorithm examines the hy-
perlink structure of the web to determine the authoritative value of a given
site [6].

Chapter 3: Protocol and Architecture 28

From a security perspective, improved quality is critical to protecting
against attacks on the distributed search mechanism. Even the strongest
encryption techniques cannot prevent a malicious user from censoring query
q by flooding the network with illegitimate documents whose metadata keys
are highly relevant to q. Insertion of dummy data to dilute the quality of
returned results is essentially a denial of service attack on the search engine.

Unfortunately, the anonymous and encrypted nature of Freenet makes it
difficult to incorporate non-query dependent factors into the search mecha-
nism. Although there is a form of linking between documents, it is not obvi-
ous how to apply a PageRank heuristic. Doing so would require a crawling
agent that could discover the hyperlink structure of encrypted data. A pos-
sible approach could separately encrypt a document’s link structure with
a public key whose private pair was known only to the crawler. Further
research is necessary into reconciling the goals of decentralization, fault-
tolerance, and anonymity with the requirements of a network crawling agent
capable of analyzing document link structure and/or other factors suggestive
of quality. Only then can FASD make informed decisions that will ensure
results are of high utility to the end-user.

3.6 Node Announcements

In order for a new node i to gain connectivity to the metadata layer, ex-
isting nodes must form connections to i and i must form connections to
existing nodes. FASD’s node announcement protocol achieves both of these
objectives.

Existing nodes form connections to node i by consistently listing i as
the reference for some specialization metadata key. For node adaptation
to occur, existing nodes must list i under the same specialization metadata
key (see section 3.7). For security reasons, node i should not unilaterally
decide which metadata key it will specialize in. To reconcile the goals of
consistency and security, FASD leverages Freenet’s existing announcement
mechanism. After a specialization GUID key has been selected for node i,
an existing node j is randomly selected by taking the specialization GUID
modulo the number of nodes in the announcement chain13. Node j then
randomly selects a metadata key from its data store. All the nodes in the
announcement chain store this metadata key and list node i as the reference.
It is impossible for a malicious party to influence which node donates the

13The nodes involved in the announcement process are said to form an “announcement
chain”.

Chapter 3: Protocol and Architecture 29

specialization metadata key because the selection process is based on a GUID
guaranteed to be random (see section 2.4.3).

Node i forms connections into the existing network by storing a reference
to each of the nodes in the announcement chain. Specifically, each existing
node sends i a metadata key randomly selected from its store. i caches these
metadata keys and lists the corresponding donor node as a reference.

3.7 Adaptability

An argument analogous to that in section 2.4.3 demonstrates that adapt-
ability also holds for metadata routing. Consider a new node i expected to
specialize in metadata key k. As per the announcement protocol, node i
will be listed as the reference for k in routing tables. Accordingly, it will
receive many queries to which k is a good hit (i.e. the cosine correlation
between k’s term vector and the query’s term vector is large). Initially, i’s
data store will consist of arbitrary metadata keys and references obtained
in the announcement process. However, with each query passing through
it, node i will cache any top hits passed back by downstream nodes and
list the corresponding downstream nodes as references. Thus, adaptability
occurs on two levels: nodes cache metadata keys close to their specialization
metadata key and form connections to other nodes specializing in similar
metadata keys.

Also note a second level of adaptability. Numerous nodes will spawn re-
quests for popular metadata keys causing them to be widely cached through-
out the network. Thus, FASD organizes itself to reduce the latency of popu-
lar queries by ensuring that the most relevant hits to popular queries will be
within a minimal number of hops. As in Freenet, there is an explicit trade-
off whereby unpopular (and unimportant?) metadata key may be culled to
ensure that the most popular (and important?) metadata keys are widely
replicated.

3.8 Extensibility Beyond Freenet

Although designed for the Freenet system, FASD’s framework has broader
applicability. FASD can be viewed as a search layer that integrates into
a wide array of distributed applications. This section briefly explores two
possibilities that hopefully suggest FASD’s value to the greater peer-to-peer
community.

Chapter 3: Protocol and Architecture 30

3.8.1 Applying FASD to Chord

Although extremely impressive, Chord’s O(log N) lookup primitive does
not support search. Augmenting a Chord network with FASD would signif-
icantly enhance the network’s utility without sacrificing distribution, fault-
tolerance, or scalability. Each node in this hybrid system would maintain an
auxiliary metadata store and route searches as per Process-Query. On
receiving hits to his query, the user would call lookup(pointer) to retrieve
the actual documents.

Since Chord does not focus on anonymity, nodes could maintain knowl-
edge of the entire request chain. In addition to passing results upstream,
node i could also transfer directly to the initial requester. Doing so would
dramatically reduce latency while retaining the adaptive benefits of caching
along the request chain. Furthermore, node i could detect loops a priori,
eliminating the need for the additional hops necessary to do so in Freenet’s
opaque environment.

3.8.2 FASD as a Stand-alone Application

More generally, FASD could leverage TCP/IP to become a stand-alone
search application that sat on top of an Intranet or the Internet. In this
model, every participant maintains a dynamic metadata store on his node.
When an author decides to share a document d, his node automatically gen-
erates a FASD metadata key describing d and inserts it into the FASD search
network. Instead of identifying d by a Freenet GUID and decryption key,
FASD would do so by IP address and filename. Search proceeds as normal
with nodes collaboratively locating and returning a list of metadata keys
close to the query. Users would retrieve the actual documents directly from
the author’s node via TCP/IP. In the event that multiple authors decide
to share an identical file14, metadata keys could contain a list of pointers
describing all the file’s locations.

14This is frequently the case with music and video files.

Chapter 4

Simulation and Experimental
Results

Simulations of a FASD network indicate promising results across all axes:
performance, scalability, recall, and fault-tolerance. This chapter describes
the discrete event simulator used to model the network and presents an
analysis of the results.

4.1 Simulator Details

The FASD simulator1 is implemented as a single-threaded, event-driven ap-
plication. Test scripts spawn external events—metadata inserts/requests
and node creation/announcement—that generate any number of internal
events—adding/culling metadata keys to/from stores, search of inverted in-
dices, and node communication. Recursive calls to Process-Query route
messages as per the FASD protocol.

On startup, the simulator randomly2 selects 2500 documents from the
OBI’s (Online Book Initiative) collection of documents and generates their
metadata key. It then inserts each of these metadata keys into a global
inverted index. For storage and computational efficiency, nodes do not con-
struct individual inverted indices. Instead, queries are processed against
the global inverted index with each node filtering out hits not currently in

1Parts of the simulation are inspired by Ian Clarke’s JAVA adaptive network client
released under the GNU public license [14].

2Due to limited memory resources documents larger than 4 KB are not used. The OBI’s
collection consists of everything from web pages to recipes to news articles to complete
texts [31].

Chapter 4: Simulation and Experimental Results 32

its metadata store. In order to emulate normal usage of a FASD network,
the simulator generates queries in the form q = t1 AND . . . AND t5 where
term ti is selected at random from the inserted metadata keys. Somewhat
arbitrarily3, each node’s data store has a capacity of 200 metadata keys.

4.1.1 Bootstrapping

In any network simulation, there is a question of how to bootstrap connec-
tivity. Abstractly, a FASD network is a directed graph with connectivity
given by the contents of nodes’ metadata stores. Specifically, if node i con-
tains a key whose reference is node j, then the graph contains the directed
edge (i, j). FASD’s aggressive caching leads to a dynamic topology that
constantly changes with metadata key inserts, queries, and node announce-
ments. To permit a new network to adapt and grow, the bootstrapping pro-
cedure must ensure connectivity—there must be a directed path connecting
every pair of vertices in the network’s graph representation4. Furthermore,
the bootstrapping procedure must emulate the node announcement proto-
col whereby nodes are initially referred to under a consistent specialization
metadata key selected at random. This initial consistency in how nodes are
referenced is imperative to node adaptation (see section 3.7).

As figure 4.1 describes, the simulator uses a regular ring-lattice topology
and a hash function to achieve the goals of connectivity and consistency.
It arbitrarily assigns each node i a specialization metadata key given by
khash(i). In order to create the directed edge (j,i) the simulator places
khash(i) in node j’s metadata store and lists i as the reference. A regular
ring-lattice topology is achieved by creating the directed edges (i, i− 1) and
(i, i + 1) for every vertex i. Vertex 0 is connected to vertex n − 1 and
vertex n− 1 to vertex 0 where n is the number of nodes in the network.

4.1.2 Primary Metrics

Efficiency

Consider a given metadata key request q that travels h hops. Assume q is
routed downstream without any backtracking and that the hth node provides

3Whenever possible, simulation runs attempt to emulate the parameters in [18].
4In the course of metadata key caching and culling, there is a risk that the network will

fragment into disconnected components. As a scale-free network, (see section 4.6) FASD is
very resistant to fragmentation unless exposed to targeted attack [2]. Nevertheless, finding
theoretical guarantees against fragmentation is an important avenue for future research.

Chapter 4: Simulation and Experimental Results 33

node 1
key ref.

node 0

khash(2) node 2

khash(0)

node n-1
key ref.

node 0

khash(n-2) node n-2

khash(0)

node 0
key ref.

node 1

khash(n-1) node n-1

khash(1)

Figure 4.1: Bootstrapping in a lattice topology

all the n top hits. The approximate bandwidth consumption is:

h · (Size(qdown) + Size(qup)) (4.1)

where Size(qdown) and Size(qup) denote the average size of q as it passes
downstream and upstream respectively. The approximate latency is:

h · (Turnover(qdown) + Turnover(qup)) (4.2)

where Turnover(qdown) and Turnover(qup) represent the average amount
of time a node spends processing q as it passes downstream and upstream
respectively. Bandwidth consumption and latency are indicators of network
performance: larger bandwidth consumption and latency leads to poorer
performance while smaller bandwidth consumption and latency leads to im-
proved performance. As (4.1) and (4.2) indicate, these metrics are pro-
portional to the number of hops a query takes (referred to as the query’s
pathlength). Thus, by noting the pathlength of queries in a FASD network
the simulator can measure network performance.

Effectiveness

There are two primary measures used in the evaluation of information re-
trieval systems [42]. Recall measures the ability of the system to present

Chapter 4: Simulation and Experimental Results 34

all “relevant” items, while precision measures the ability to identify and
reject “irrelevant” items. A classic dilemma in information retrieval is the
definition of “relevance” in the context of subjective user feedback. For the
purposes of the simulation, relevance of a metadata key vis-à-vis a given
query is näıvely taken as the cosine correlation value. Although an impor-
tant direction for future research, a more sophisticated definition of rele-
vance is outside this paper’s focus on developing a fault-tolerant, scalable,
and completely decentralized search framework.

The exclusive use of cosine correlation value as the measure of relevance
removes any need for subjective intervention. Given a query q, spawn a
search for q from a node in the FASD network and label the resulting set
RF . Then determine the results that a centralized search engine would
return in response to q (i.e. use the global inverted index). Label this result
set RG and remove from RG any metadata keys not yet inserted into the
FASD network. Finally, ensure ‖RG‖ ≤ n by culling the items with the
lowest cosine correlation value. Recall that n (set at 10 for the simulation)
is the number of hits that Process-Query will pass upstream. Within this
framework, recall and precision are as follows:

Recall =
‖RF ∩RG‖
‖RG‖

(4.3)

Precision =
‖RF ∩RG‖
‖RF ‖

(4.4)

If the top n hits returned from FASD are precisely the top ten hits returned
from the centralized search then ‖RF ∩ RG‖ = ‖RG‖ = ‖RF ‖ = n. In this
case, recall and precision as given by (4.3) and (4.4) will both be 100%.
Thus, 100% recall and precision indicate that FASD’s distributed approach
was as effective as its centralized counterpart (search on an inverted index
containing the entire collection of inserted documents).

Reconciling efficiency and effectiveness

In FASD, as in any other information retrieval system, there is a trade-
off between effectiveness (recall and precision) and efficiency (latency and
bandwidth consumption). Utilizing a larger HTL for queries will ensure
higher recall and relevance at the expense of decreased performance. The
simulator concerns itself with an upper bound on latency and bandwidth
consumption by examining the number of hops necessary for a request to
retrieve the same top n results that centralized search would return.

Chapter 4: Simulation and Experimental Results 35

Every 200 time-steps, the simulator spawns 300 random queries from
randomly selected nodes. For each query, it records the number of hops
necessary to retrieve the same top n results that centralized search would
return. During this poll period, the network’s topology is frozen—no data is
cached or culled. The HTL of poll queries is set at 500. If a poll query still
fails to retrieve the same top n results as centralized search, it is treated as
taking 500 hops.

4.2 Growth

Simulating growth incorporates all the components of the FASD protocol—
node announcements, query requests, and metadata key inserts. Initially,
there is a connected core of 20 nodes. At every time-step, the script selects
a random node i in the network. Node i randomly decides to issue an insert
of a randomly selected metadata key or a request for a randomly generated
query. Every 5 time-steps, a new node enters the network and announces
itself to a randomly selected existing node. This process continues until the
network reaches a size of 1,000 nodes. The HTL for announcements and
inserts/requests is set at 10 and 20 respectively.

As described in section 4.1.2, the simulator polls the network every 200
time-steps to determine network performance. During this poll period the
network is frozen and 300 requests are spawned from random nodes. The
simulator observes how many hops each of these requests takes before it
retrieves the same top n results as centralized search.

Figure 4.2 plots request pathlength as a function of network size. FASD
exhibits excellent average-case performance—in under 20 hops it retrieves
the same top n results as centralized search engine. The top quarter of
requests locate the top hits with only 4 hops. As the plot of the third quartile
indicates, there is poor worst-case retrieval with some requests taking as
many as 100 hops to locate all the results. The histogram in figure 4.3 depicts
the distribution of all request pathlengths at the end of the simulation.
Using iterative deepening (see section 4.5) can help mitigate the worst-case
performance by retrieving most of the top hits in a shallow request (hops-
to-live of 20) with the flexibility to deepen the search if desired.

One might object that the simulation does not realistically model the
rate of change of growth. In [48], Shapiro and Varian argue that networks
are subject to positive externalities. As a network’s size increases, the rate
of growth will also increase because the value of the network is proportional

Chapter 4: Simulation and Experimental Results 36

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900 1000

R
eq

ue
st

 P
at

hl
en

gt
h

(h
op

s)

Network Size (nodes)

first quartile
median

third quartile

Figure 4.2: Request pathlength versus network size. The request pathlength
is the number of hops necessary to retrieve the same top n results as cen-
tralized search. See section 4.2 for details.

to its size5. However, as [18] points out, the number of requests in the
network will also be proportional to size. Since the number of requests
issued is also held constant, it is valid to assume a constant rate of growth.
If anything, the model may be overly demanding in that it does not allow
for the period of steady state convergence that network economics predicts.
The adoption cycle for a new network typically includes a slower rate of
growth at launch, followed by an increase rate during takeoff, and then a
leveling off as saturation occurs [48]. As the results in section 4.4 suggest, a
steady state convergence period would permit the network to further adapt
and, as such, would further reduce the number of hops necessary for requests
to retrieve the same top n results as centralized search. To the extent that
the simulation focuses on an upper bound for latency and bandwidth, the
lack of a steady state convergence period is justifiable.

5Metcalfe’s Law suggests that the value of a network increases as the square of the
number of users.

Chapter 4: Simulation and Experimental Results 37

0

2

4

6

8

10

12

0 50 100 150 200

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Request Pathlength (hops)

median=18

Figure 4.3: Distribution of all request pathlengths at the end of the simu-
lation. The median number of hops necessary to retrieve the same top n
results as a centralized search is 18. See section 4.2 for details.

Another plausible objection might question the random usage pattern in
the simulation whereby the probability of issuing a given query is uniformly
distributed. Random usage is a questionable model given several studies’
conclusion that web access follows a Zipf-like distribution [3, 5, 12]. In order
to model a Zipf-like usage pattern, the simulator should arbitrarily assign
a popularity to each possible query. The relative probability of issuing the
ith most popular query is proportional to 1/iα with α taking on some value
less than unity. FASD’s bias towards wider replication of popular metadata
keys suggests that performance would only improve under Zipf-like usage.
Thus, a limited time-frame and this paper’s focus on upper bound latency
and bandwidth consumption justify a uniform usage pattern. Future simu-
lation should certainly incorporate more realistic usage scenarios to confirm
FASD’s ability to very efficiently service the most popular queries.

Chapter 4: Simulation and Experimental Results 38

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800 900 1000

M
ed

ia
n

R
eq

ue
st

 P
at

hl
en

gh
t (

ho
ps

)

Network Size (nodes)

FASD routing
random routing

Figure 4.4: Median request pathlength under FASD and random routing.
FASD is more efficient (retrieving the same top n results as centralized search
in 18 hops versus 73 hops). See section 4.3 for details.

4.3 Routing

To test the routing heuristic used in Process-Query, the simulator com-
pares its performance to a random router. Instead of forwarding to the ref-
erence associated with the closest metadata key, a random router contacts a
neighbor selected at random. Figure 4.4 compares the evolution of median
request path length under the two routing models. All other parameters are
the same as given in section 4.2.

By the time the networks have grown to a size of 1000 nodes, the number
of hops necessary to retrieve the same top n results as a centralized search is
significantly higher under random routing. It seems that FASD’s closeness
based routing is critical to its performance.

Chapter 4: Simulation and Experimental Results 39

4.3.1 The Cluster Hypothesis

Rijsbergen’s clustering hypothesis asserts that “closely associated docu-
ments tend to be relevant to the same queries” [51]. His hypothesis offers
deeper insight into why routing via Process-Query is so effective. Unlike
a random router, FASD routing distributes metadata keys in a consistent
fashion. Specifically, the use of the cosine correlation value pushes the net-
work towards a clustered hierarchy in which each node’s data store contains
only closely associated metadata keys. Thus, when FASD routes a query q
to node i because it was the closest reference, there is a high likelihood that
other metadata keys stored at node i will also be close to q.

A number of ad hoc probes failed to confirm increased key clustering in
a FASD network versus a random network. The approach involved comput-
ing the centroid vector C for node j’s data store. By observing the mean
closeness of all metadata keys in j’s data store to C, a measurement of
metadata key clustering is obtained (a larger mean closeness indicates high
key clustering). The centroid C is defined as:

Ck = (1/m)
m∑

i=1

ti,k (4.5)

where m is the number of metadata keys in node j’s data store, Ck is the
kth entry in C, and ti,k is the weight of term k in metadata key i.

The failure of these probes to detect a statistically significant difference
suggests that clustering is not occurring at such a readily observable level.
For any given node j in a FASD network there likely exists some subset of
metadata keys K in j’s store or immediate neighborhood that is tightly clus-
tered. Keys that do not belong to K are likely due to to irrelevant queries
spawned in the vicinity of or from node j. Additionally, these anomalous
keys might be artifacts stored at j before adaptation was complete. Develop-
ing heuristics to discover these pockets of clustered metadata keys is critical
to verifying the interesting claim that FASD realizes the goals of centralized
document classification systems in a distributed and dynamic fashion.

4.4 Adaptability

To observe the adaptive characteristics of a FASD network, the simulator
bootstraps a 1000 node network in a regular ring topology. At every time-
step, the script selects a random node i in the network. Node i randomly
decides to issue an insert of a randomly selected metadata key or a request

Chapter 4: Simulation and Experimental Results 40

0

100

200

300

400

500

0 5000 10000 15000 20000

R
eq

ue
st

 P
at

hl
en

gt
h

(h
op

s)

Time-step

first quartile
median

third quartile

Figure 4.5: Request pathlength versus time. After 20,000 time-steps, the
1000 node network can retrieve the same top n results as a centralized search
in a median number of 5 hops. See section 4.4 for details.

for a randomly generated query. Figure 4.5 describes the evolution of request
pathlength over time. Within 20,000 time-steps, FASD requires only 5 hops
to retrieve the same top ten results as centralized search. It seems that query
requests and metadata inserts enable the network to increase its connectivity
and improve routing efficiency.

A ring topology is selected for the reasons given in section 4.1.1 and
because it is the most difficult state from which to converge. Network con-
vergence is facilitated significantly by long-range edges that permit requests
and inserts to travel to the specializing node. In a ring topology, there are
no long-range edges and the mean number of hops necessary to reach a given
node is maximized: it should be approximately n/2 (justified intuitively as
half the number of hops necessary to get to the opposite side of the ring).
Since FASD can converge from this state, it should be able to converge from
any topology. Although tests using other topologies (e.g. random graphs

Chapter 4: Simulation and Experimental Results 41

and k-regular graphs6 with k > 1) suggest that this is true, an important
goal for future research is theoretical support for the claim that convergence
will occur from any connected topology.

4.4.1 Small-world

In [53] Watts and Stogatz identified so-called “small-world” networks. First,
consider two structural properties of a graph G = (V,E): its characteristic
path length L and clustering coefficient C. L is the average shortest distance
between all u, v : u, v ∈ V . C is the average cliquishness for all u ∈ V . To
define the cliquishness of a vertex u ∈ V , consider the subgraph G′ of G
induced by the neighbors of u. That is, G′ = (V ′, E′) where

V ′ = v ∈ V : (u, v) ∈ E

E′ = (u, v) ∈ E : u, v ∈ V ′

A measure of the cliquishness of u can now be given as:

‖E′‖
(‖V ′‖)(‖V ′‖ − 1)

(4.6)

Starting from a ring lattice with n vertices and k edges per vertex, Watts
and Stogatz examined the effect of randomly re-wiring each edge with prob-
ability p. When p = 0, L is approximately equal to (n/2k) and C is approx-
imately equal to 0.75. Conversely, when p = 1, L is approximately equal to
(lg n/ lg k) and C is approximately equal to (k/n). As [53] proves, a large
C does not necessarily lead to a large L nor does a small C necessarily lead
to a small L. Small-world networks belong to a large range of 0 < p < 1
over which the characteristic path length is close to that of a random graph
while the clustering remain high. Apparently, the introduction of a long-
range edge between u and v has a highly non-linear effect on L, shortening
not only the distance between u and v but between their immediate neigh-
bors, neighborhoods of neighbors, and so on. FASD’s discovery of these long
rang-edges in the network of figure 4.5 is likely responsible for the steep drop
in the request pathlength between 4000 and 5000 time-steps.

Tests indicate that Freenet networks have a low characteristic path length
and a relatively high clustering value [18]. Reassuringly the characteristic
pathlength and clustering given in figure 4.6 confirm that the FASD meta-
data layer also exhibits small-world characteristics. The clustering coeffi-

6A k-regular graph is a ring of of n vertices each of which is connected to its nearest k
neighbors.

Chapter 4: Simulation and Experimental Results 42

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

C
ha

ra
ct

er
tis

tic
 P

at
hl

en
gt

h
(h

op
s)

C
lu

st
er

in
g

Time-step

characteristic pathlength
clustering coefficient

Figure 4.6: Evolution of characteristic pathlength and clustering over time.
See section 4.4.1 for details.

cient in the FASD network is orders of magnitude larger than what would
be expected in a random graph. However, the characteristic pathlength
quickly converges to 2.5 which is consistent with a random graph.

Comparing figures 4.5 and 4.6 yields a disparity between the convergence
of characteristic pathlength and the number of hops necessary to retrieve the
same top n results as centralized search. Since FASD is equivalent to local
search it will not necessarily yield the globally optimal decisions necessary
to attain the lower bound on hops given by the characteristic pathlength.
Moreover, there is no reason to expect that the shortest distance between
any two nodes is equivalent to the number of hops necessary to retrieve the
same top n results as centralized search. Unless one node contains all the
top n hits, the latter will always be larger than the former. The two metrics
are related to the extent that FASD’s adaptation process drives the number
of hops necessary to retrieve the same top n results as centralized search
towards the lower bound given by the characteristic pathlength.

Chapter 4: Simulation and Experimental Results 43

-50

0

50

100

150

200

250

300

10 100 1000 10000

R
eq

ue
st

 P
at

hl
en

gt
h

(h
op

s)

Network Size (nodes)

first quartile
median

third quartile

Figure 4.7: Request pathlength versus network size (logarithmic scale). A
10,000 node network can retrieve the same top n results as a centralized
search with a median number of 17 hops. See section 4.5 for details.

4.5 Scalability

In order to examine FASD’s scalability, extend the scenario in section 4.2 to
a network of 10,000 nodes. Figure 4.7 indicates strong scalability with the
10,000 node network retrieving the same top n results as a centralized search
in under 20 hops. Note that the worst-case request pathlength peaks at an
inhibitive 250 hops. To determine whether or not the iterative deepening ap-
proach of section 3.2.2 might work to mitigate this worst-case performance,
the simulator issues 300 shallow requests (hops-to-live of 20) at the end of
the simulation. The histogram in figure 4.8 describes the ability of these
shallow requests to retrieve the same top n results as centralized search. In
the 10,000 node network, 83% of the shallow requests retrieve 50% or more
of the top n hits centralized search would retrieve. The ability of shallow
requests to retrieve most of the top n results makes a strong case for itera-

Chapter 4: Simulation and Experimental Results 44

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Recall (after 20 hops)

Figure 4.8: Distribution of recall achieved by 300 shallow requests (hops-to-
live of 20) at the end of the simulation. In the 10,000 node network, 83%
of the shallow requests retrieve 50% or more of the top n hits centralized
search would retrieve. See section 4.5 for details.

tive deepening whereby the user’s shallow request would retrieve most hits
and a deeper request would locate the outstanding ones.

As section 4.4.1 discusses, a FASD network is a small world. Accord-
ingly, its characteristic pathlength L is similar to that of a random graph
and, as such, will scale logarithmically with the size of the network. Recall
that L provides a lower bound on the number of hops necessary to retrieve
the same top n results as centralized search. As the network organizes it-
self by clustering metadata keys and improving local routing decisions, the
request pathlength converges towards L. Thus, the request pathlength is
constantly driving down towards a lower bound that grows logarithmically
in the number of nodes. The semi-log plot in figure 4.7 confirms that an ex-
ponential increase in the number of nodes precipitates only a linear increase
in the median request pathlength.

Chapter 4: Simulation and Experimental Results 45

0.01

0.1

1

10

1 10 100

P
er

ce
nt

ag
e

of
 N

od
es

Out-degree (metadata store size)

Figure 4.9: Out-degree distribution at the end of the simulation. A large
percentage of nodes have low out-degree (poorly connected) while a small
percentage have large out-degree (well connected). See section 4.6 for details.

4.6 Fault-tolerance

[2] examines the correlation between a network’s connectivity distribution
P (k) and its attack tolerance. P (k) is the probability that a node in the
network has out-degree k. If P (k) decays as a power law (i.e. P (k) ≈ k−λ),
the corresponding network is said to be “scale-free”. In these networks,
a small portion of nodes have high connectivity while a large portion are
weakly connected. Figure 4.9 describes the out-degree distribution in the
FASD network from section 4.2. The anomalous point at an out-degree of
200 is due to data store saturation. Increasing the meta data store size would
distribute the anomalous point in a scale-free distribution. The linearity of
the degree distribution in logarithmic space demonstrates that FASD, like
Freenet, is a scale-free network.

To understand why such a distribution arises consider a new node i that

Chapter 4: Simulation and Experimental Results 46

10

100

1000

0 10 20 30 40 50 60 70 80 90

M
ed

ia
n

R
eq

ue
st

 P
at

hl
en

gt
h

(h
op

s)

Percentage of Nodes Lost

random failure
targeted attack

Figure 4.10: Comparing the impact of random failure and targeted attack
on median request pathlength. See section 4.6 for details.

enters the network and a richly connected node j already in the network.
Since the announcement process follows random links and since j is better
connected than most nodes, there is a strong likelihood i will form a link
to j. Subsequent queries/inserts through i will further enrich j’s connec-
tivity. Also note that there is a strong probability that node i will never
become as connected as node j because new nodes will “prefer” to attach to
j and existing nodes will consistently route more requests/inserts through
j. Thus, the node announcement protocol coupled with growth generates
and maintains a scale-free link distribution.

Scale-free networks are extremely tolerant of random failure. Since the
majority of nodes have few links, nodes with small connectivity will be se-
lected with much higher probability. Removal of these nodes has a minimal
impact on overall network performance. However, if a malicious agent gains
knowledge of the network’s topology and targets the small portion of richly
connected hub nodes, performance degradation is far more rapid. The dif-

Chapter 4: Simulation and Experimental Results 47

ficulty of discovering a FASD network’s topology7 helps mitigate this risk.
Figure 4.10 describes fault-tolerance under random failure and targeted

attack in the network of section 4.5. Fault-tolerance is modeled by progres-
sively removing nodes from the network and observing the impact on the me-
dian request pathlength. For every 2.5% of nodes lost, the simulator issues
300 requests and observes how many hops are necessary to retrieve the same
top n results as a centralized search. As described in section 4.1.2, requests
requiring more than 500 hops are treated as taking 500 hops. When mod-
eling random failure, the simulator removes nodes at random. Conversely,
when modeling targeted attack, it removes the most-connected nodes first.

As expected, FASD is highly resistant to targeted attack with the median
number of hops necessary to match centralized search remaining below 50
even when up to 47.5% of nodes fail. This resistance to random failure is
due to FASD’s scale-free link distribution and the replication of metadata
keys across the network. When exposed to a targeted attack, the network
becomes unusable almost immediately with the number of hops necessary
to match centralized search passing 50 after only 5% of nodes are lost.

7It is not even obvious how to evaluate the size of a FASD network.

Chapter 5

Future Work

This chapter organizes the various threads for future research identified
throughout the paper into three broad categories: improved result quality,
enhanced security, and further simulation.

5.1 Improved Result Quality

Currently, FASD utilizes a primitive closeness function that fails to incorpo-
rate non-query factors such as a document’s authority value or popularity. It
is critical to security and usability that the successful algorithms in [6, 34] be
incorporated into FASD. How to collect this information in a decentralized
and encrypted system such as Freenet remains an open question.

5.2 Enhanced Security

The techniques for search on encrypted data in [49] offer great potential
for dramatically improving FASD’s current level of security and anonymity.
Unfortunately, there is the difficult problem of distributing decryption keys
to searchers without compromising them to untrusted node operators. A so-
lution may lie in a trusted middle layer that mediates encryption of searches
from consumers and decryption of results passed backed from nodes. The
challenge lies in implementing such a layer without any intermediary cen-
tral authority. Furthermore, as [49] points out, efficient update schemes for
encrypted indices are required.

Chapter 5: Future Work 49

5.3 Further Simulation

More sophisticated simulation is necessary to verify the claim that FASD is
a distributed implementation of the clustering techniques described in [43].
Efforts should also be made to model the trade-off between result quality
and compression schemes for metadata key and lexicons. Finally, simulation
models involving complex queries are necessary to confirm the efficacy of the
approach suggested in section 3.2.2.

Chapter 6

Conclusion

The fundamental problem facing any distributed application is the location
of data in a transient network without centralized control or hierarchical
organization. A cursory examination of the peer-to-peer landscape might
suggest the problem has been solved with the advent of Freenet’s adaptive
routing and Chord’s consistent hash paradigm. Although these networks
can fetch a requested file with laudable efficiency (O(log N) hops), they are
incapable of identifying which files will be the most pertinent to a given
user’s query. In a world of information overload, the seriousness of this
shortcoming cannot be understated. Not surprisingly, the most successful
peer-to-peer networks such as Napster and Gnutella include(d) an integrated
search mechanism. Unfortunately, these are best described as ad hoc, lacking
scalability, decentralization, or fault-tolerance.

FASD is the first search architecture that is completely decentralized,
self-maintaining, and scalable. A FASD metadata layer sits on top of an
existing distributed system to offer search capability comparable to that of
a centralized inverted index. At the crux of the system are automatically
generated metadata keys and a powerful primitive that organizes, replicates,
and retrieves these keys without any mediating authority.

Simulations of a FASD layer for Freenet indicate excellent scalability
and performance. The simulation networks display a high degree of fault-
tolerance against random failure at the expense of decreased resistance to
targeted attack. Fortunately, the adherence to most of Freenet’s stringent
security requirements mitigates this risk. Currently, the most pressing issue
is FASD’s näıve use of the cosine correlation value. A more sophisticated
metric that incorporates non-query factors such as a document’s “authority
value” and popularity is necessary from a usability and security standpoint.

Chapter 6: Conclusion 51

Despite its rudimentary closeness operator, FASD offers a powerful aug-
mentation to the Freenet network that this community will hopefully con-
sider adopting1. More broadly, the system has promising potential to any
distributed application that can benefit from a fault-tolerant, adaptive, scal-
able, distributed search engine.

1In e-mail correspondence, Ian Clarke remarks, “[FASD] is extremely impressive, both
in concept and execution, and I definitely think that this mechanism, or a derivative of
this mechanism, should go on the [Freenet] v0.6 to do list”

Bibliography

[1] Adler, S. The slashdot effect, an analysis of three internet publica-
tions. Linux Gazette (March 1999).

[2] Albert, R., Jeong, H., et al. Error and attack tolerance of complex
networks. Nature, 406 (July 2000), 378–382.

[3] Almeida, V., Bestavros, A., et al. Characterizing reference local-
ity in the WWW. Tech. Rep. 1996-011, 21, 1996.

[4] Borodin, A., Roberts, G. O., et al. Finding authorities and hubs
from link structures on the world wide web. In World Wide Web (2001),
pp. 415–429.

[5] Breslau, L., Cao, P., et al. Web caching and zipf-like distributions:
Evidence and implications. In INFOCOM (1) (1999), pp. 126–134.

[6] Brin, S., and Page, L. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems 30, 1–7
(1998), 107–117.

[7] Cho, J., Garćıa-Molina, H., et al. Efficient crawling through
URL ordering. Computer Networks and ISDN Systems 30, 1–7 (1998),
161–172.

[8] Clarke, I. A distributed decentralised information storage and re-
trieval system. http://citeseer.nj.nec.com/clarke99distributed.html.

[9] Clarke, I., Miller, S. G., et al. Protecting free expression online
with freenet. IEEE 6, 1 (January/February 2002), 40–49.

[10] Clarke, I., Sandberg, O., et al. Freenet: A distributed anonymous
information storage and retrieval system. In Workshop on Design Issues
in Anonymity and Unobservability (2000), pp. 46–66.

BIBLIOGRAPHY 53

[11] Cooper, W. A definition of relevance for information retrieval. Infor-
mation Storage and Retrieval 7, 1 (June 1971), 19–37.

[12] Cunha, C., Bestavros, A., et al. Characteristics of WWW client-
based traces. Tech. Rep. 1995-010, 1, 1995.

[13] Freegle. http://www.freegle.com. Site was down as of March 31, 2002.

[14] Freenet. http://freenetproject.org.

[15] Gnutella. http://www.gnutella.com.

[16] Goffman, W. On relevance as a measure. Information Storage and
Retrieval 2, 3 (December 1964), 201–203.

[17] Google. http://www.google.com.

[18] Hong, T. Performance. In Oram [32], 2001, ch. 14.

[19] Huang, L. A survey on web information retrieval technologies. Tech.
rep., ECSL, 2000.

[20] Jones, K. S. A statistical interpretation of term specificty and its
application in retrieval. Journal of Documentation 28, 1 (March 1972),
11–20.

[21] Jovanovic, M. A., Annexstein, F. S., et al. Scalability issues
in large peer-to-peer networks—a case study of gnutella. Tech. rep.,
University of Cincinnati, 2001.

[22] Karger, D. R., Lehman, E., et al. Consistent hashing and ran-
dom trees: Distributed caching protocols for relieving hot spots on the
world wide web. In ACM Symposium on Theory of Computing (1997),
pp. 654–663.

[23] Kazaa. http://www.kazaa.com.

[24] Kobayashi, M., and Takeda, K. Information retrieval on the web.
ACM Computing Surveys 32, 2 (2000), 144–173.

[25] Kubiatowicz, J., Bindel, D., et al. Oceanstore: An architecture
for global-scale persistent storage. In Proceedings of ACM ASPLOS
(November 2000), ACM.

[26] Lawrence, S., and Giles, C. L. Accessibility of information on the
web. Nature 400 (1999), 107–109.

BIBLIOGRAPHY 54

[27] Lessig, L. Code and other laws of cyberspace. Basic Books, New York,
NY, 1999.

[28] Microsoft. Cache array routing protocol. White Paper, 1997.

[29] Minar, N., and Hedlund, M. A Network of Peers: Peer-to-Peer
Throughout the History of the Internet. In Oram [32], 2001, ch. 1.

[30] Napster. http://www.napster.com.

[31] Online book initiative. http://gopher.std.com/obi/.

[32] Oram, A., Ed. Peer-To-Peer: Harnessing the Power of Disruptive
Technologies. O’Reilly, Sebastopol, California, 2001.

[33] Orwant, J. What’s on freenet. http://www.openp2p.com, November
2000.

[34] Page, L., Brin, S., Motwani, R., et al. The pagerank citation
ranking: Bringing order to the web. Tech. rep., 1998.

[35] Project gutenberg. http://promo.net/pg/.

[36] Ritter, J. Why gnutella can’t scale. no really.
http://www.darkridge.com/ jpr5/doc/gnutella.html.

[37] Rowstron, A., and Druschel, P. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems.

[38] Russell, S., and Norvig, P. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall, 1995.

[39] Russell, S., and Norvig, P. Inference in First-Order Logic. In [38],
1995, ch. 9, pp. 265–296.

[40] Russell, S., and Norvig, P. Search Strategies. In [38], 1995, ch. 3,
pp. 55–91.

[41] Salton, G., and McGill, M. J. Introduction to Modern Information
Retrieval. McGraw-Hill, New York, 1983.

[42] Salton, G., and McGill, M. J. Retrieval Evaluation. In [41], 1983,
ch. 5, pp. 118–156.

[43] Salton, G., and McGill, M. J. Retrieval Refinements. In [41],
1983, ch. 6, pp. 199–256.

BIBLIOGRAPHY 55

[44] Salton, G., and McGill, M. J. The SMART and SIRE Experimen-
tal Retrieval System. In [41], 1983, ch. 4, pp. 118–156.

[45] Salton, G., and McGill, M. J. Systems Based on Inverted Files.
In [41], 1983, ch. 2, pp. 24–51.

[46] Salton, G., and McGill, M. J. Text Analysis and Automatic In-
dexing. In [41], 1983, ch. 3, pp. 52–117.

[47] Shapiro, A. L. The Control Revolution. PublicAffairsTM, New York,
NY, 1999.

[48] Shapiro, C., and Varian, H. R. Information rules: a strategic
guide to the network economy. Harvard Business School Press, Boston,
Massachusetts, 1998.

[49] Song, D. X., Wagner, D., et al. Practical techniques for searches
on encrypted data. In IEEE Symposium on Security and Privacy
(2000), pp. 44–55.

[50] Stoica, I., Morris, R., et al. Chord: A scalable peer-to-peer lookup
service for internet applications. Tech. Rep. TR-819, MIT, March 2001.

[51] van Rijsbergen, C. Information Retrieval, 2 ed. In [52], 1979, ch. Au-
tomatic Classification.

[52] van Rijsbergen, C. Information Retrieval, 2 ed. Butterworths, 1979.

[53] Watts, D. J., and Strogatz, S. H. Collective dynamics of ‘small-
world’ networks. Nature 440–442, 393 (1998).

