
AltaVista Search Intranet
Developer's Kit

April 1999

This manual is a compilation of the HTML files for the product in book format.

Revision/Update Information: Version 2.6

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Compaq Computer
Corporation. Compaq Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license. Restricted Rights: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013.

AltaVista, DIGITAL UNIX, Compaq Tru64 UNIX, and Alpha are trademarks of
Compaq Computer Corporation.

Microsoft, Windows, and Windows NT are registered trademarks of
Microsoft Corporation.

Intel is a registered trademark of Intel Corporation.

Sun, Java, and Solaris are registered trademarks of Sun Microsystems,
Inc.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd. UNIX and
XWindow System are registered trademarks of X/Open Company Ltd.

All other trademarks and service marks are the property of their
respective companies.

(c) Digital Equipment Corporation 1999. All Rights Reserved.

iii

Contents

PRODUCT OVERVIEW.. 1

REQUIREMENTS.. 1
COMPONENTS .. 2
NEW FEATURES IN VERSION 2.6.. 3
GENERAL INDEXING PROCESS... 4

INDEXING, SEARCHING, AND CONVERTING.. 7

CREATING THE INDEX... 7
The Indexing Method ... 7
What is a Word? .. 7
The Importance of Locations.. 8
Tracking the Location of the Documents... 8

STEPS TO INDEXING.. 9
Differences Between avs_newdoc and avs_startdoc ...10
Adding New Documents Efficiently..10

CREATING A FILTER PROCEDURE ...11
EXAMPLES OF INDEXING TECHNIQUES ...12

Defining Searchable Numeric Values ..12
Defining Your Own Ranking Values ..13
Defining Multiple Values ..14
Unicode Support...15
Handling HTML and SGML Special Characters..15
Indexing Documents with Dates ..15
Multiple Dates Associated with a Document..16

SEARCHING THE INDEX..16
Understanding Relevance Ranking..16
Simple Query Syntax...17
Boolean Query Syntax...17
Rules for Query Processing...17
Basic Steps to Search the Index ...18
How Results Are Ordered ...19
Searching for Numeric Values...19
Searching for a Field ..20
Searching for Literal Entries...20
Searching with Wildcards ...20
Searching and Ranking with Dates..20
Ranking Search Results...21
Filtering Search Results..21
Incremental Searching ..21
Proximity Searching ...22
Query Processing Timeout Support ...22

CONVERTING DOCUMENTS FOR INDEXING..22
USING THE ALTAVISTA SEARCH INTRANET COMPATIBILITY API ..23

Contents

iv

ADVANCED CONCEPTS AND TECHNIQUES... 25

MANAGING A GROWING INDEX... 25
Optimizing for Speed.. 26

PROGRAMMING MODELS .. 26
Using the Multi-Threaded Model.. 26
Using the Multiple Process Model.. 26

TUNING COMPAQ TRU64 UNIX FOR LARGE INDEXES.. 27
INCREASING VIRTUAL MEMORY FOR PROCESSES ... 27

Modifying the vm-mapentries Attribute... 27
Modifying the ubc-maxpercent Attribute... 28

HOW THE PUBLIC ALTAVISTA SEARCH SITE SETS THE VIRTUAL MEMORY ATTRIBUTES 28
INDEXING WITH DATABASE APPLICATIONS.. 29
CUSTOMIZING YOUR INDEX WITH THE DEVELOPER'S KIT ... 30

Initializing the avs_parameter Structure In the C API... 31
Modifying the Parameters in the C API .. 32
Opening the Index.. 32

USING THE SAMPLE PROGRAMS... 33

UNDERSTANDING THE C SAMPLE PROGRAM.. 34
What the Sample Program Does... 34
Creating an Index .. 35
Searching an Index .. 35
Performing a Boolean Search with Ranking Terms ... 36
Restricting Advanced Searches by Date.. 36
Performing a Multi-Threaded Search ... 37
Counting Word Occurrences in Your Index .. 37
Deleting a Document from the Index .. 37
Compacting an Index ... 37

COMPILING AND LINKING THE C SAMPLE PROGRAM.. 38
COMPILING ON A COMPAQ TRU64 UNIX SYSTEM ... 39
COMPILING ON MICROSOFT WINDOWS NT .. 39
COMPILING ON SOLARIS AND LINUX SYSTEMS... 39
COMPILING ON AIX SYSTEMS... 39
COMPILING AND LINKING WITH DOCUMENT CONVERTERS ... 40
USING THE DOCUMENT CONVERSION TEST PROGRAM ... 40
UNDERSTANDING THE DATABASE EXAMPLE.. 40

Creating the Index ... 40
Searching the Index ... 41
Retrieving Data from the Database .. 41
Deleting a Document ... 41
Synchronizing the Index with the Database... 41

SAMPLE JAVA APPLICATION ... 42
TCL SAMPLE APPLICATION ... 42
VISUAL BASIC SAMPLE APPLICATION ... 42
ALTAVISTA SEARCH INTRANET COMPATIBILITY API SAMPLE ... 42

C PROGRAMMER'S REFERENCE ... 45

Contents... 45
AVS_ADDDATE ... 46
AVS_ADDFIELD... 47
AVS_ADDLITERAL .. 48
AVS_ADD_MS_CALLBACK... 49
AVS_ADDVALUE ... 50

Product Overview

 0–v

AVS_ADDWORD...51
AVS_BUILDMODE ..52
AVS_BUILDMODE_EX ..53
AVS_CLOSE ...54
AVS_COMPACT ..55
AVS_COMPACTIONNEEDED ..56
AVS_COMPACT_MINOR ..57
AVS_CONVERT_FILE2HTML..58
AVS_CONVERT_FILE2TEXT ..59
AVS_CONVERT_INIT ..64
AVS_COUNT ..65
AVS_COUNT_CLOSE...66
AVS_COUNT_GETCOUNT ..67
AVS_COUNTNEXT ..68
AVS_COUNT_GETWORD ...69
AVS_CVTERRMSG ..70
AVS_CVTERRMSG_COPY ..71
AVS_DEFAULT_OPTIONS ..72
AVS_DEFINE_VALTYPE ..73
AVS_DEFINE_VALTYPE_MULTIPLE ...74
AVS_DELETEDOCID..76
AVS_ENDDOC ..77
AVS_ERRMSG ..78
AVS_ERRMSG_COPY ..79
AVS_GETINDEXMODE ..80
AVS_GETINDEXVERSION ..81
AVS_GETINDEXVERSION_COUNTS_V ..82
AVS_GETINDEXVERSION_SEARCH_V ..83
AVS_GETSEARCHRESULTS..84
AVS_GETSEARCHTERMS...85
AVS_GETSEARCHVERSION..86
AVS_LOOKUP_VALTYPE...87
AVS_MAKESTABLE ..88
AVS_NEWDOC ...89
AVS_OPEN...91
AVS_QUERYMODE ...92
AVS_RELEASE_VALTYPES ..93
AVS_SEARCH...94
AVS_SEARCH_CLOSE ...96
AVS_SEARCH_EX...97
AVS_SEARCH_GENRANK ..98
AVS_SEARCH_GETDATA ..100
AVS_SEARCH_GETDATA_COPY ..101
AVS_SEARCH_GETDATALEN...102
AVS_SEARCH_GETDATE...103
AVS_SEARCH_GETDOCID ...104
AVS_SEARCH_GETDOCID_COPY ...105
AVS_SEARCH_GETDOCIDLEN ...106
AVS_SEARCH_GETRELEVANCE ...107
AVS_SETDOCDATA ..108
AVS_SETDOCDATE...109
AVS_SETDOCDATETIME ...110
AVS_SETPARSEFLAGS ..111
AVS_SETRANKVAL ..112

Contents

vi

AVS_STARTDOC...113
AVS_TIMER ...115
AVS_VERSION..116
AVSI_SETDOCDATA ...117
AVSI_GETDOCDATA ...118
AVSI_URL2DOCID ..119
AVSI_CONVERT_TO_UTF8 ..120
AVSI_CONVERT_FROM_UTF8..121
AVSI_CONVERT_CJKQUERY..122
DATA STRUCTURES ...124

avs_options...124
avs_parameters...124
Default Values ..125
Index Management..126

INDEX FOR AVSI COMPATIBILITY..126
CONVERTER STRUCTURES AND PARAMETERS ...127

Character Sets You Can Index...127
AVSI COMPATIBILITY STRUCTURES ..127

Filter Procedure ...129

VISUAL BASIC REFERENCE SECTION ...131

NAMING CONVENTIONS ...131
CLASS AVSINDEX..131
ADDDATE FUNCTION ..132
ADDFIELD FUNCTION ...133
ADDLITERAL FUNCTION ...134
ADDVALUE FUNCTION..135
ADDWORD FUNCTION...136
ADDWORD_NUMWORDS PROPERTY...137
AVS_VERSION PROPERTY ...138
BUILDMODE FUNCTION ..139
CLOSE FUNCTION ...140
COMPACT FUNCTION ..141
COMPACT_MINOR FUNCTION ..142
COMPACT_MORENEEDED PROPERTY ...143
COMPACTIONNEEDED FUNCTION ..144
COUNT FUNCTION ..145
COUNT_CLOSE FUNCTION...146
CRES_COUNTNEXT FUNCTION...147
CRES_WORD PROPERTY..148
CRES_WORDCOUNT PROPERTY ...149
DEFINE_VALTYPE FUNCTION ..150
DEFINE_VALTYPE_MULTIPLE FUNCTION ...151
DELETEDOC FUNCTION...152
DELETEDOC_NUMDELETED ..153
ENDDOC FUNCTION ..154
ERRMSG FUNCTION ..155
GETINDEXMODE PROPERTY ..156
INDEXVERSION PROPERTY ..157
IOPT_CACHE_THRESHOLD PROPERTY..158
IOPT_CHARS_BEFORE_WILDCARD PROPERTY ..159
IOPT_CHARSET PROPERTY ..160
IOPT_ENABLE_RANKBYDATE PROPERTY ...161
IOPT_ENABLE_SEARCHBYDATE PROPERTY..162

Product Overview

 0–vii

IOPT_ENABLE_SEARCHSINCE PROPERTY ...163
IOPT_IGNORED_THRESHOLD PROPERTY ..164
IOPT_INDEXFORMAT PROPERTY..165
IOPT_NBUCKETS PROPERTY..166
IOPT_NTIERS PROPERTY ...167
IOPT_PARSESGML PROPERTY..168
IOPT_UNLIMITED_WILD_WORDS PROPERTY ..169
LASTERROR PROPERTY...170
MAKESTABLE FUNCTION ..171
OPEN FUNCTION...172
RELEASE_VALTYPES FUNCTION..174
SEARCH FUNCTION ..175
SEARCH_CLOSE FUNCTION ...177
SEARCH_GENRANK FUNCTION ..178
SEARCH_GETRESULTS FUNCTION..179
SEARCH_GETTERMS FUNCTION...180
SETDOCDATASTR FUNCTION...181
SETDOCDATE FUNCTION...182
SETDOCDATETIME FUNCTION ...183
SETRANKVAL FUNCTION ..184
SOPT_DOCLIMIT PROPERTY ..185
SOPT_RANK_TO_BOOLEAN PROPERTY ..186
SRES_DAY PROPERTY...187
SRES_DOCDATA PROPERTY ..188
SRES_DOCID PROPERTY..189
SRES_DOCSFOUND PROPERTY...190
SRES_DOCSRETURNED PROPERTY ...191
SRES_MONTH PROPERTY ..192
SRES_NUMTERMS PROPERTY ..193
SRES_RELEVANCE PROPERTY ...194
SRES_SEARCHVERSION PROPERTY ..195
SRES_TERM PROPERTY...196
SRES_TERMCOUNT PROPERTY ..197
SRES_YEAR PROPERTY ...198
STARTDOC FUNCTION ..199
STARTDOC_STARTLOC PROPERTY...200

AVSINDEX CONSTANTS ..201

DOCUMENT CONVERSION API ...202

CLASS AVSDOCUMENT...203

CONVERT_FILE2HTML FUNCTION ...204
CONVERT_FILE2TEXT FUNCTION ..205
CVTERRMSG FUNCTION ..206
ERRMSG FUNCTION ..207
LASTCVTERR PROPERTY...208
LASTERROR PROPERTY...209
OPT_CVTPATH PROPERTY...210

AVSDOCUMENT CONSTANTS..211

1

1
Product Overview

The AltaVistaTM Search Developer's Kit Version lets you build your own search and retrieval
application or add AltaVista Search-powered search capabilities to database applications and
file repositories. Users can find what they need quickly and easily without special database
training. The software also provides system integrators and software developers with the tools
they need to integrate the AltaVista Search engine technology into custom applications
designed to provide search and retrieval capabilities for data repositories not supported by
standard AltaVista Search products.

Typical examples of these kinds of data repositories are:

Type of Database Description

Unstructured
Contain discrete files. Shared folders and directories containing
large numbers of documents on LANs are examples of
unstructured repository.

Structured

Contain fielded data. Database applications like Oracle, Sybase,
Ingres, Microsoft Access, SQL and DB2 are examples of
structured repository. These structured repositories are also not
web-based.

You can also use AltaVista Search Developer's Kit to index Gopher sites.

Note: The Developer's Kit does not provide a web crawler or user interface.

Requirements
The following are the minimum hardware and software requirements for installing the
AltaVista Search Developer's Kit:

Requirements Description

Hardware Any Alpha system running either Microsoft® Windows NT® Version
4.0 or Compaq Tru64 UNIX (Digital UNIXTM) Version 4.0

IntelTM Pentium system with a 133 MHz processor running Microsoft
Windows NT Version 4.0. Windows 95 and Windows 98 are also
supported operating systems for Intel hardware.

Sun® SPARC system running Solaris® Version 2.5.1, 2.6 or 2.7

IBM™ RS6000 system running AIX version 4.21 or later

Product Overview

1–2

Requirements Description

Intel™ Pentium System running Red Hat Linux Version 5.0

Software

C language compiler and standard libraries.

Or Microsoft's Visual Basic

A web browser for viewing the documentation.

Application Runtime

Sufficient RAM to get desired performance which is dependent on
application behavior and index size. There is no specific minimum
requirement for RAM.

Approximately 1 GB of disk space after installation for building and
storing a moderately-sized index

Components
The Developer's Kit includes these components:

Indexing engine This is the same indexing engine used by the AltaVista Search
Intranet product and the AltaVista Public Search Service on the
World Wide Web.

APIs Routines that allow applications to access and manipulate the
AltaVista Search index. The Developer's Kit provides the following
language support:

• C language

• Visual Basic

Converter libraries
and converter API

A document converter API that contains document conversion
technologies from Inso Corporation, Adobe Systems, Inc., and
Compaq Computer Corporation. Using the libraries and the API, you
can convert various document types to text. Only PDF documents can
be converted to HTML at this time.

AltaVista Search
Intranet
compatibility API

An API that provides compatibility with AltaVista Search Intranet
V2.3 by allowing the Developer's Kit applications to read data from
and write data to indexes created by the AltaVista Search Intranet
product. This new feature is available with the C API only and runs
on the following operating systems:

• Any Alpha system running either Microsoft® Windows
NT® Version 4.0 or Compaq Tru64 UNIX (Digital
UNIXTM) Version 4.0

• IntelTM Pentium system with a 133 MHz processor
running Microsoft Windows NT Version 4.0.

• Sun® SPARC system running Solaris® Version 2.5.1, 2.6
or 2.7

Documentation Covers descriptions of the APIs, API usage, along with project
planning and programming suggestions.

Product Overview

 1–3

Multi-purpose-
programming
examples

Most programming options in C and Visual Basic are coded in the
sample programs. These coding examples can be copied and modified
by developers. The sample programs are compiled for you and are
available to run on the appropriate operating systems:

• C API - Compaq Tru64 UNIX, Sun Solaris, IBM AIX,
or Linux on Intel IX86(avs_sample), and Microsoft
Windows NT (avs_sample.exe).

• Visual Basic - on Microsoft Windows NT
(vb_sample.exe)

There are other examples provided as samples for interfacing the
Developer's Kit to additional programming languages:

• A Java JDirect implementation

• C++ implementation with includes a sample database
application using Data Access Object (DAO) and the
Developer's Kit

• A Tcl implementation

Development license Allows developers to create, demonstrate, and pilot their AltaVista
Search powered solution on one server. (Runtime licenses are
required to implement and sell the AltaVista Search-powered
solution.)

The AltaVista Search Developer's Kit does not provide a user or query interface to the index.
This is part of the development partner's added value. You are free to use any user interface
model that meets your customer's needs, for example, Web browsers, Visual Basic-based UIs,
existing end user applications, and so forth.

The AltaVista Search C library lets you create and maintain an inverted word index. You can
make calls to the AltaVista Search index from any language that links with C, or use Visual
Basic on the Microsoft Windows NT platform.

New Features in Version 2.6
The following table lists the new features that have been added to the AltaVista Search
Developer's Kit:

New Features Description

Document Converter
Libraries

A new document converter library, which converts various
document types to text, is available for the C and Visual Basic
APIs. The sample C program contains an example that uses the
new converter API calls. This feature is available on the
following: any Alpha system running either Microsoft ®

Windows NT ® Version 4.0 or Compaq Tru64 UNIX (Digital
UNIX) Version 4.0; IntelTM Pentium system with a 133 MHz
processor running Microsoft Windows NT Version 4.0.; or
Sun® SPARC system running Solaris® Version 2.5.1, 2.6 or 2.7.
For more information, see Converting Documents for
Indexing.

Product Overview

1–4

New Features Description

AltaVista Search Intranet
compatibility API

An API that provides compatibility with AltaVista Search
Intranet V2.3 by allowing the Developer's Kit applications to
read data from and write data to indexes created by the
AltaVista Search Intranet product. This new feature is available
with the C API only and runs on any Alpha system running
either Microsoft ® Windows NT ® Version 4.0 or Compaq Tru64
UNIX (Digital UNIX) Version 4.0; IntelTM Pentium system
with a 133 MHz processor running Microsoft Windows NT
Version 4.0.; or Sun® SPARC system running Solaris® Version
2.5.1, 2.6, or 2.7. For more information, see Using the
AltaVista Search Intranet Compatibility API.

New Platforms Available The AltaVista Search Developer's Kit is available on IBM
RS6000 running AIX Version 4.21 or later, as well as, an Intel
Pentium system running Red Hat Linux Version 5.0. The
converter libraries are not available with these platforms.

New word weighting option A new search option allows you to eliminate the higher
weighting of words occurring at the beginning of a document.

Wildcard feature available
with word count.

The word count feature now supports the use of wildcards. The
wildcard characters '?', '*', and '**' can be used to represent 1, 0
to 5, and 0 to unlimited characters, respectively.

New sample programs To demonstrate the use of the new conversion technologies, the
Visual Basic sample program and the C program have been
updated. The sample files and their executable files, are
contained in the Developer's Kit. The C sample program also
contains an example of using the AVSI compatibility API

General Indexing Process
The AltaVista Search programming interface implements a number of procedures for managing
text indexes and document filters. You can use the programming interface to do the following
things:

• Create a new index.

• Optionally convert your documents to text.

• Add documents to the index .

• Use filters as helper procedures to parse the contents of a document and customize the
way it is indexed. The filters that you use depend on the type and format of the
document you are including in your index.

• Using your own query interface, submit queries to the index and retrieve documents
that match the queries.

• Delete documents from the index, or replace existing documents with updated
versions.

• Periodically write the contents of the in-memory index to disk, and merge the on-disk
information into a single, streamlined file.

Product Overview

 1–5

The C Programmer's Reference and the Visual Basic Programmer's Reference provide
complete details on every procedure and function in the APIs.

 2–7

2
Indexing, Searching, and Converting

This section describes the processes of indexing, searching, and converting. It gives a
conceptual overview of each process, and then step-by-step instructions on the following:

• Creating the Index

• Searching the Index

• Converting Documents for Indexing (optional)

• Using the AltaVista Search Intranet Compatibility API

Creating the Index
Creating and searching your index can be made easy if you (as an AltaVista application
programmer) adopt a model of how to handle the material to be indexed and for which you will
subsequently search. The AltaVista Model of Indexing uses documents which, in turn, consist of
a sequence of words. Each word occupies a location within the document, and these locations
are sequential for adjacent words.

The Indexing Method
To index a document, your application calls the indexer for each word in the document, passing
an integer location along with the word to indicate where the word is put. It then calls a
procedure to give the indexer some identification data that can be retrieved for documents
matching a query, for example, in title, filename, URL, and so forth. The integer locations can
be anything you want, but, normally, you would number the words in each document
sequentially. The integer location for each word is then just its number. This indexing method
takes about 30% of the size of the original document. It allows phrased queries and fielded
queries.

What is a Word?
The definition of a word in your index depends on the character set that you have assigned to
the index. It is necessary that all calls to the API use the same character set. You can index any
character string you want (with some restrictions) as a word, using avs_addliteral, and you can
find the documents with these words using the advanced boolean expression in the form
{word}.

The avs_addword algorithm treats any contiguous sequence of alphanumeric characters as a
word. For each word to be indexed, avs_addword does the following:

• Enters the word into the index at the current or next location

Indexing, Searching and Converting

2–8

• Determines if there is any capitalization in the word, and if so, also indexes a lower-
cased version

• Determines if there is a common mapping from any of the characters in the word to
ASCII, and if so, indexes one or two additional versions of the word using these
mappings.

For non-alphabetic languages however, this algorithm is modified. Currently, each non-
alphabetic, non-digit, non-separator character is treated as a word by itself. Special query
processing algorithms are employed to efficiently locate the character sequences that users of
the language would normally identify as words.

The Importance of Locations
AltaVista Search uses location values for the following:

• Matches words to documents

• Matches fields within documents

• Determines the adjacency of words (for example, phrase searches)

The boundaries between documents and words are important for finding and returning
meaningful search results. In addition, word location is important for processing advanced
queries where the position of certain words in relation to each other is important (for example,
in searching for phrases, in proximity searches, or in searching for certain words within a
specified field).

It is critically important to assign location values properly during indexing. The assigning of
locations is fully automatic in the simplest case where avs_addword does all the work. In this
case the words of the document are laid out end to end and are numbered sequentially starting
with the value returned by avs_newdoc or avs_startdoc. The same is true for field boundaries
and for values (indexed quantities like dates that can be range-searched).

The following figure shows how two very short documents would be stored in the index
database.

As the figure illustrates, each word is actually stored as a word-location pair. The index also
contains information about the beginning and ending locations of each document. Document1
starts at location 1, and Document2 starts at location 6.

In Document2, the first word contains an uppercase letter, so the word is indexed twice: once
with case preserved and once in all lowercase. Both versions of the word are at the same
location, so that the word would be found appropriately regardless of whether a query is case
sensitive or case-insensitive.

Tracking the Location of the Documents
In the C API, the avs_newdoc procedure, in cooperation with the filter, keeps track of the
starting and ending location of documents in the index. When the avs_newdoc or avs_startdoc
procedure calls the filter, it passes the filter a location at which to start adding words to the
index. When the filter starts adding words, it in turn passes the starting location to the

Indexing, Searching, and Converting

 2–9

avs_addword procedure. Based on the starting location, the avs_addword procedure
increments the location number for each word that it indexes, thereby assigning each word a
unique virtual address in the indexed document.

If the filter calls avs_addword multiple times (for example, once for each line in the
document), the filter must increment the starting location each time by the number of words
indexed in the previous avs_addword procedure.

When the filter completes its work, it returns the total number of words that it added to the
index. This also allows filters to be nested.

Steps to Indexing
Your application should follow these basic steps to create an index:

1. Optionally use the document conversion API to convert documents to text before
indexing.

2. Create the directory for your index. An AltaVista index needs a place on disk to
maintain its storage. When the C API mentions index path, it is referring to the storage
area of the index. You should create and reserve a directory for the use of each index,
and pass the path name of this directory to avs_open in order to access the index.

3. Optionally, define value types with avs_define_valtype or
avs_define_valtype_multiple to be used for adding searchable numeric values or
ranking terms to the documents to be indexed.

4. Open the index in mode rw, using avs_open

The C API supports a parameter block which is passed to avs_open, and which can be
used to alter the customary default options for creating and managing indexes. See
avs_parameters structure for a description of this block. The first time avs_open is
called for a new or empty directory, the parameters then in effect are used to create
and initialize the index structure. The index is empty at this point, but its parameters
are fixed.

5. For each document to be added:

• Initialize the document and assign its document identifier, using avs_newdoc
or avs_startdoc.

• Add the words, fields, and values belonging to the document, using the
avs_addword, avs_adddate, avs_addliteral, avs_addvalue, and avs_addfield
procedures.

• Assign a date to the document, using avs_setdocdate or avs_setdocdatetime
(for ranking by date).

• Assign an opaque data structure to meet any needs of your search and display
logic, using avs_setdocdata -- this structure is retrievable from a search result,
along with the document's unique document identifier and date.

• Assign any additional ranking values, using avs_setrankval

• Finalize the document, using avs_enddoc if initialized with avs_startdoc

6. Every so many documents (every half million words or so), and when the last
document has been processed, make the actual update to the index, by using
avs_makestable.

Indexing, Searching and Converting

2–10

After each call to avs_makestable, call avs_compactionneeded and if indicated, do a
loop of avs_compact_minor calls to tune the index structure.

7. Close the index with avs_close.

8. Release any previously defined value types with avs_release_valtypes.

An index that is open in rw mode is also available for performing searches. You can perform a
search at any time, in the same thread as the updates to the index or in other threads. You can
even open the index in r mode in another process, perform a simple search, and then close the
index again.

Differences Between avs_newdoc and avs_startdoc
The procedures avs_newdoc and the avs_startdoc/avs_enddoc pair are used to enter
documents into the index but have different structures. The avs_newdoc procedure uses the
callback function and implicitly calls a filter to process the data being entered into the index.

For languages that cannot use the callback mechanism (for example, Visual Basic and Java),
avs_startdoc and avs_enddoc procedures handle entering the document data with an explicit
call to the filter function that processes the data.

The following code fragments have the same results

1. avs_newdoc(idx, datapath,filter, docid, flags,&numWords);

2. avs_startdoc(idx, docid, flags, &startloc);
filter(idx, datapath, startloc, &numWords);

avs_enddoc (idx);

Adding New Documents Efficiently
You can add new documents, update existing documents, and delete old documents in your
index at any time. You will find it is more efficient to do several additions and deletions at
once, rather than doing them one at a time. You can still query your existing index while the
additions and deletions take place.

The following diagram illustrates the interaction of your application code and the AltaVista
Search library during the addition of a new document to the index using the new avs_newdoc
procedure.

Indexing, Searching, and Converting

 2–11

From your application, you make the appropriate C API calls to open the index you are
populating. Use the filters to process or convert the documents you are adding to your index.
Your application calls avs_makestable to write the index to disk, and closes the index. To
access the newly-built index, use the query interface you have created and start querying the
index.

Creating a Filter Procedure
The avs_newdoc procedure defines a block of text as a document and establishes an identifier
with which the document can be found in the index. The avs_newdoc procedure also defines a
filter, which is written or supplied by you, the application programmer. The filter function is
called each time your application calls avs_newdoc to create a separate document in the index.
If the avs_startdoc and avs_enddoc procedures are used instead of avs_newdoc, the filter
procedure is called between these two calls.

The filter does the bulk of the work of preparing the document to be indexed. It is at the filter
stage where any necessary document type conversion takes place. The document conversion
libraries may be used at this point to convert documents to text before being added to the index.
Alternatively, the application could do a bulk conversion of the documents beforehand. The
filter function is called using the following required arguments:

IN avshdl_t idx (index handle)
IN void *pFname (information sufficient for the filter to access
the document contents)
IN unsigned long startloc (starting location for adding words)
OUT unsigned long *pNumWords (number of words added to the
index)

Once the filter is finished processing a block of text, it can pass the text (in the form of a line, a
paragraph, or even the entire document), to the avs_addword procedure. The avs_addword
procedure parses the text into words and adds those words to the index. It interprets as a word
any sequence of letters or digits that is surrounded by spaces or other non-alphanumeric
characters. When it adds a word to the index, the avs_addword procedure preserves the case of

Indexing, Searching and Converting

2–12

the word as it appears in the document. If the word contains any uppercase letters, the software
also indexes a lowercase version of the word, to support case-insensitive searching.

In addition to preparing the document so that each word in it can be indexed by avs_addword,
you can use these calls in the filter to also do the following:

Use... To...

avs_setdocdate Set a date for the document

avs_setdocdata Specify a data string to be returned as a search result

avs_setdocdatetime Set a date and time for the document.

avs_addfield Identify certain words to be indexed as fields.

avs_addliteral Add a single word exactly as entered to a document index.

avs_adddate Index the supplied date at the specified location.

avs_addvalue Index the supplied value at the specified location.

avs_setrankval Add a numeric value to a document index that can be used for
custom ranking.

For example, if you are indexing mail messages and want users to be able to search based on
the subject line of a message, you might identify the subject text of each document as the
"Subject:" field and use the avs_addfield procedure to index it as such.

Examples of Indexing Techniques
The next several sections discuss some indexing techniques that could be useful in building the
kind of index you need.

Defining Searchable Numeric Values
With the Developer's Kit, you can add your own searchable values.

To add your own value types for searching and ordering search results, follow these steps in
structuring your application:

1. Use avs_define_valtype procedure to define your value type. For example, suppose
you want to define a new value type called lines to count the number of lines per
document. You must supply the name (lines) and the lowest and highest possible
values. The following code example defines the value type for searching, in this case,
the number of lines per document.

 error = avs_define_valtype ("lines", 0, 10000, NULL,
&linesvaltype);
if (error != AVS_OK) {
printf ("avs_define_valtype returned %s\n", avs_errmsg(error));
return 1;
}

Note: You should call avs_define_valtype only in your main thread when no indexes
are open.

Indexing, Searching, and Converting

 2–13

2. To enter a searchable value, call the avs_addvalue procedure. The following code
examples adds a searchable value (number of lines). You can use lines in a Boolean
query to constrain the results, for example, [lines:50-200].

 error = avs_addvalue (idx, linesvaltype, lineo, startloc);
 if (error != AVS_OK) {
 printf ("avs_addvalue returned: %s\n" avs_errmsg(error));
 }

3. Call the avs_release_valtypes procedure after the last call to avs_close to release the
values.

If the natural way to specify a searchable value is not an integer, you may supply a function
that can convert the search string into an integer value in the right range. The function is then
passed to avs_define_valtype. For example, you may want to search or rank results by a part
number which consists of an alphanumeric string. Your application code may contain the
following: avs_define_valtype ("partnum", 0, 1000, partnum2int(),
&partnumvaltype) where partnum2int() is a function supplied by your application that
converts an alphanumeric part number to an integer value.

Defining Your Own Ranking Values
With the Developers Kit extended ranking capability, you can add your own ranking values for
ordering search results. Rank values include a type and the value.

To add your own value types for ordering search results, follow these steps in structuring your
application:

1. Use avs_define_valtype procedure to define your value type. For example, suppose
you want to define a new value type called rlines to order search results by the the
number of lines per document. You must supply the name (rlines), the lowest and
highest possible values. The following code example defines the value type for
extended ranking of search results, in this case, the number of lines per document.

error = avs_define_valtype ("rlines", 0, 10000, NULL,
&rlinesvaltype);
 if (error != AVS_OK) {
 printf ("avs_define_valtype returned %s\n",
avs_errmsg(error));
 return 1;
}

When defining value types for ranking purposes, always specify a minimum value of
zero. Values are normalized to zero when stored in the index. If you choose to use a
minimum value other than zero, your application must normalize the values to zero
before performing a search.

Note: You should call avs_define_valtype only in your main thread when no indexes
are open.

2. To assign a rank value for a document, use a call to the avs_setrankval procedure.
The following example adds a ranking value (the number of lines):

 error = avs_setrankval (idx, rlinesvaltype, lineno);
 if (error != AVS_OK) {
 printf ("avs_setrankval returned: %s\n:, avs_errmsg(error));
 }

Indexing, Searching and Converting

2–14

3. Call the avs_release_valtypes procedure after the last call to avs_close to release the
values.

If the natural way to specify the filter value is not an integer, you may supply a function that
can convert the search string into an integer value in the right range. The function is then
passed to avs_define_valtype. For example, you may want to rank results by a part number
which consists of an alphanumeric string. Your application code may contain the following:
avs_define_valtype ("partnum", 0, 1000, partnum2int(),
&partnumvaltype) where partnum2int() is a function supplied by your application that
converts an alphanumeric part number to an integer value.

Defining Multiple Values
With the Developer's Kit, you can add multiple non-zero values to documents which can be
used to filter search results.

To add your multiple value type for filtering search results, follow these steps in structuring
your application:

1. Use avs_define_valtype_multiple procedure to define your value type. For example,
suppose you want to define a new value type called multi to represent the number of
words per line in a document. You must supply the name (multi), the lowest and
highest possible values, and the maximum number of multiple filtering values. The
following code example defines the value type for filtering search results on multiple
values, in this case, the number of words per line.

error = avs_define_valtype_multiple ("multi", 0, 255, 255,
&multivaltype);
 if (error != AVS_OK) {
 printf ("avs_define_valtype_multiple returned %s\n",
avs_errmsg(error));
 return 1;
 }
When defining value types for filtering purposes, the minimum value must be zero.

Note: You should call avs_define_valtype_multiple only in your main thread when
no indexes are open.

2. To assign a rank value for a document, use a call to the avs_setrankval procedure.
The following example adds filter values for the number of words per line
(numwords).

 if (numwords <256) numwordflags[numwords]++;
 for (i="0;" i><256' i++) {
 if (numwordflags[i]) {
 error="avs_setrankval" (idx, multivaltype, i);
 if (error !="AVS_OK)" {
 printf ("avs_setrankval returned: %s\n",
avs_errmsg(error));
 }
 }
}

3. Call the avs_release_valtypes procedure after the last call to avs_close to release the
values.

If the natural way to specify the filter value is not an integer, you may supply a function that
can convert the search string into an integer value in the right range. The function is then
passed to avs_define_valtype_multiple . For example, you may want to filter search results by
a part number which consists of an alphanumeric string. Your application code may contain the

Indexing, Searching, and Converting

 2–15

following: avs_define_valtype_multiple ("partnum", 0, 255, 255,
partnum2int(), &partnumvaltype) where partnum2int() is a function supplied by
your application that converts an alphanumeric part number to an integer value.

Unicode Support
The Developer's Kit provides the capability to index full Unicode texts using the UTF-8
encoding. Unicode is a multi-byte encoding framework that provides for 2**32 character
positions, of which only about 2**16 are filled to date.

Unicode is aimed at multilingual environments and internationalization. The Developer's Kit
has limited support for automatic parsing of texts into words for the common European
character sets. The standard includes the following languages: Latin, Greek, Cyrillic,
Armenian, Hebrew, Arabic, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu,
Kannada, Malayan, Thai, Lao, Georgian, Tibetan, Japanese kana, the complete set of modern
Korean hangul, and a unified set of Chinese/Japanese/Korean (CJK) ideographs. The standard
is extensible and is continually enhanced. Refer to http://www.unicode.org/unicode/standard
for more information on the Unicode Standard.

You can still use the single-byte ISO Latin-1 code set as an alternative, and a single-byte
ASCII8 mode is also provided which passes 8-bit characters through unchanged to the index.
The character set must be specified in the avs_parameter structure. LATIN1 is the factory
default. In the avs.h file the allowable character sets are defined as:

• AVS_CHARSET_LATIN1 - 0

• AVS_CHARSET_UTF8 - 1

• AVS_CHARSET_ASCII8 - 2

Handling HTML and SGML Special Characters
The avs_addword procedure will optionally detect and handle HTML or SGML entity
substitutions, for example, for accented characters as in é, so that ASCII HTML pages
containing accented words can be indexed properly.

The avs_addword parsing options are defined with the avs_setparseflags procedure. To
enable SGML parsing, the parse flag is set as follows:

 #define AVS_PARSE_SGML 1

Indexing Documents with Dates
When you index your documents, you can set a date for each one through the avs_setdocdate
or the avs_setdocdatetime procedures. Once the dates are in the index, you can use the dates or
date ranges to limit your searches. The date is returned in the search results.

The Developer's Kit is capable of storing dates from 01/01/0100 through 12/31/2148.

You can limit your query with a date range added as an extra Boolean term. The format of the
date range is [dd/mm/yyyy-dd/mm/yyyy]. If you omit the beginning date, your query will
return everything in the index with a date before the end date. If you omit the end date, your
query result will contain all documents with dates after the beginning date. If you want only the
documents indexed on one date, use the same beginning and ending dates. The end dates are
part of the range.

Indexing, Searching and Converting

2–16

Multiple Dates Associated with a Document
The procedure avs_adddate allows the indexing of multiple dates at various locations within a
document, for example, as a part of a field. A document can be found using any or all of the
associated dates.

For example, suppose your application gets the time the document was last modified from the
operating system and uses this value with avs_setdocdate. You can also associate another date
with the document - the date it was indexed. This code snippet demonstrates the use of the
avs_adddate and avs_addfield to create a field called "Indexed" containing the current date.

 time(<ime);
 curtime = gmtime(<ime);
 avs_adddate (idx, 1900+curtime->tm_year, 1+curtime->tm_mon,
curtime->tm_mday, startloc);
 avs_addfield (idx, "Indexed", startloc, startloc + 1);
 startloc += 1;

Documents with multiple dates will be returned in date range searches if any of the dates
entered by avs_adddate or avs_setdocdate/avs_setdocdatetime are in a given document. This
can be deceiving because only dates set by avs_setdocdate and avs_setdocdatetime are
displayed as a result of calling avs_search_getdate.

Searching the Index
With the Developer's Kit, you can perform the following types of searches:

• simple

• advanced - using Boolean terms

• advanced - using the ranking mechanism

• advanced - using a combination of Boolean and ranking

Use the avs_search, avs_search_ex, or the avs_search_genrank procedure to search the index
you have created.

Both Boolean and ranking searches use an avs_options data structure, in which you can specify
the maximum number of documents to return, and an optional timer limit (for multi-threaded
applications only). The options structure is defined in the avs.h header file and is initialized by
a call to the avs_default_options procedure.

Understanding Relevance Ranking
A feature of AltaVista searching is the optional ranking of results based on their probable
relevance to the search query.

The search engine ranks the results of a search based on a weight value assigned to each word
in the query, and a resulting overall relevance rating of each document that meets the search
criteria.

A document earns a relevance rating based on the number of words in the search query that it
contains, and the weight value of each of those words. The document containing the most
words with the highest weight value is considered most relevant. The closer the relevance
rating is to a value of 1, the more likely it is that a document meets the search criteria.

Indexing, Searching, and Converting

 2–17

A search result can also have a relevancy ranking of zero (0). In this case, all results have the
same weight or are equally relevant. A relevancy ranking of zero can happen in the case where
the application did not specify a ranking in the query.

The weight of a word is determined by the number of occurrences of that word in the entire
index. A word that occurs less frequently in the index earns a higher weight, based on the
assumption that it is more precise and specific than a word that occurs frequently.

For example, the word "programming" might occur many times in an index, whereas the word
"COBOL" would probably occur less frequently. "COBOL" would be given a higher weight
than "programming" in a search query containing both words, because a document containing
only the word "COBOL" would be more likely to match the searcher's interest than a document
containing only the word "programming." A document containing both "COBOL" and
"programming" would earn the highest relevancy ranking.

Note: The position of the word in the document, and the frequency of occurrence of the word
in a single document, have some bearing on the ranking of a document. The most significant
factor in determining ranking is the combined weight of words in the search query. Also, the
search engine considers only words without an operator preceding them when it does ranking.
If operators precede all words in the search query, the results are returned in no particular order.

Simple Query Syntax
To perform a basic search, use the operators plus (+) and minus (-) to indicate words or phrases
that are required or prohibited in the search results. For example, the following query
expression requests documents that must contain the word results and can also contain the
phrase year end:

 "year end" +results

Boolean Query Syntax
For Boolean searches, use the logic operators AND, OR, NOT, NEAR, and WITHIN. For
example, the following query requests that either of the words apple or pear appear in the same
document with either of the words tart or pie.

 (apple OR pear) AND (tart OR pie)

The following query requests that both the words spreadsheet and training appear in a
document's title: field.

 title:(spreadsheet AND training)

Rules for Query Processing
Both the ranking and Boolean search procedures follow the same basic rules for processing
queries:

• Like the indexer, the search engine interprets a word as any string of letters and digits
that is delineated by non-alphanumeric characters. Consequently, AltaVista Search
ignores punctuation except to interpret it as a separator for words.

• A group of two or more words enclosed in double quotes indicates a phrase. Phrasing
ensures that the search engine finds the words together, instead of looking for separate
instances of each word individually.

Indexing, Searching and Converting

2–18

• An asterisk (*), double asterisk (**), or question mark (?) following three or more
characters indicates a wildcard; the search engine will find all words that match the
specified pattern. For more information refer to the Searching with Wildcards

• Case sensitivity of a search is based on the case of each word in the query. A word in
all lowercase letters results in a case-insensitive search, whereas if a word contains
any uppercase letters, the software searches for an exact-case match.

Basic Steps to Search the Index
The AltaVista Search programming interface provides a way to examine the contents of an
index once it has been created. Use the avs_search and the avs_counts procedures to search
for the presence of a specified word or words.

1. Ensure that any application-specific value types used during indexing with
avs_define_valtype or avs_define_valtype_multiple are defined.

2. Use the avs_open procedure to open the index in r mode (or rw if you are also
updating the index at the same time).

3. For each search request:

• Call avs_search (or avs_search_ex or avs_search_genrank).

• Call avs_getsearchresults to retrieve each document that meets the search
criteria.

• Optionally call any of the following procedures to retrieve information
about the results:

• avs_search_getdatalen

• avs_search_getdata

• avs_search_getdata_copy

• avs_search_getdate

• avs_search_getdocid

• avs_search_getrelevance

• Use the returned search handle and other returned values to fetch any or
all result data.

• Use avs_search_close to end the procedure and free the resources
allocated for the search.

4. For each counts request:

• Call avs_count to initialize the counting process, specify a word or word
prefix to search for, and obtain a handle for the count. To enumerate the
entire index from a to z, specify a null value for the word (pWordprefix)
argument.

• Pass the count handle to avs_countnext, which retrieves the first index
entry. Continue calling avs_countnext to find subsequent entries that
match the search criteria, until the procedure returns
NO_MORE_WORDS.

Indexing, Searching, and Converting

 2–19

• After each call to avs_countnext, use avs_count_getcount to return the
total number of times the word occurs in the index.

• Use avs_count_getword to retrieve the word associated with the current
count.

• Finally, end the procedure with avs_count_close.

5. Close the index using avs_close.

6. Release any previously defined value types with avs_release_valtypes.

You can use the avs_count and related procedures as diagnostic tools to
test for the presence of a specific word or word stem in the index, or to
get a count of words or groups of words. You might use the count
procedures to learn why users do not get the results they expect from a
query, or to obtain a general idea of the makeup of your index.

How Results Are Ordered
The counts results are ordered lexicographically. The search results are ordered in one of
several ways, depending on which search call is used, and on the parameters of that call.

• The avs_search and avs_search_ex procedures assign to each matching document a
score based on how well that document matches the set of ranking terms provided in
the search call. If no ranking terms were provided, the results are presented in the
same order as they were added to the index.

• The avs_search_genrank procedure orders the results according to a named value
within the document, or by the document date or time. Higher values move documents
to the front of the sequence. This value name is supplied in the pRankTerms parameter
and can be prefixed with a minus sign (-) to specify inverse ordering (lower values
first). The predefined ranking term #date is the name assigned to the document's date
and time as set by avs_setdocdate and avs_setdocdatetime.

Searching for Numeric Values
With the Developer's Kit you can extend the type syntax to index and subsequently search for
documents based on specific numeric values or ranges. For more information about indexing
and defining value types, see Defining Searchable Numeric Values.

After you have added numeric values to your index with the avs_addvalue procedure, you can
use the avs_search procedure to define how to search for the Boolean Query expression and
the numeric range expression. The pBoolQuery argument in the avs_search procedure is used
to specify the range of the numeric value type. For example, use the following format for an
application-defined value type like lines:

 [lines:<min value> - <max value>]

Your C programs must provide a function to convert numeric values that are not entered in
numeric format. For example, your user may want to search documents based on a range of
currency values that contain non-numeric characters. Specify a function to convert these values
to integers when defining the value type with the avs_define_valtype or
avs_define_valtype_multiple.

Indexing, Searching and Converting

2–20

With your application you can also control whether your results are returned in descending or
ascending order. In order to return the results in ascending order, place the minus sign (-) in
front of the value type.

Searching for a Field
The following query requests documents that must contain the field Subject:reorganization and
must not contain the field Date:07/07/97. The documents can also contain the word CEO but
are not required to.

 CEO +Subject:reorganization -Date:07/07/97

Searching for Literal Entries
Once you have added the literal index entries with the avs_addliteral function, you can
perform an advanced search to find the literal string. If the string you are looking for contains
special characters (for example, the forward slash (/)), you can use curly braces ({}) in the
query string as in the following example: {cnn/xyz}. All characters between the matching curly
braces are treated as part of a word except the asterisk (*) which still works as a wildcard.

Searching with Wildcards
AltaVista Search Intranet Developer's Kit provides extended wildcard support in all kinds of
searching. Wildcards are limited to the following characters:

 Asterisk (*) After 3 specified characters will search
for matches in up to 5 trailing letters.

Question Mark (?) After 3 specified characters will match
exactly one more character.

Double Asterisk (**)
More flexible as it will search for
matches for an unlimited number of
trailing characters.

With the Developer's kit, you can set the minimum number of characters before the wildcard in
the avs_parameter block when the default of 3 characters is not sufficient for your needs. You
also have the ability use the wildcards interchangeably and more than once in the same search
string, for example:

 ser*ip?t*
This could possibly find the word serendipity.

You can also determine whether to limit to 50 the number of words found by the wildcard
character search or allow all instances of the word stem in the index you are searching. In the
avs_parameter block, set the unlimited_wild_words flag to 1 to avoid the 50 word limit.

Searching and Ranking with Dates
Documents with multiple dates will be returned in date range searches if any of the dates
entered by avs_adddate or avs_setdocdate/avs_setdocdatetime are in a given document. This
can be deceiving since only dates set by avs_setdocdate and avs_setdocdatetime are displayed
as a result of calling avs_search_getdate.

Indexing, Searching, and Converting

 2–21

Only dates set with avs_setdocdate or avs_setdocdatetime can be used to rank documents by
date.

Ranking Search Results
With the Developer's Kit, you can extend the type syntax to index and subsequently order
search results by the named ranking value. For more information about indexing and defining
value types, see Defining Your Own Ranking Values.

After you have added extended types to your index by the avs_setrankval procedure, you can
use the avs_search_genrank procedure to search for the Boolean query expression using the
generic ranking expression. The pRankTerms argument in the avs_search_genrank procedure
can be either a predefined term, for example, #date, or an application defined value type like
rlines. The special ranking setup argument pRankSetup should always be set to NULL for this
release.

For example, you could use avs_define_valtype procedure to define the number of lines in a
document. Use avs_search_genrank to rank search results by number of lines per document.

With your application you can also control whether your results are returned in descending or
ascending order. In order to return the results in ascending order, place a minus sign (-) in front
of the value type.

Your C program must provide a function to convert ranking values that are not entered in
numeric format. For example, your user may want to rank by part numbers that contain
alphanumeric characters. Because ranking values are all integers, your function must be able to
convert the query string into an integer value to return a search result.

Filtering Search Results
With the Developer's Kit you can extend the type syntax to index and filter search results. For
more information about indexing and defining value types, see Defining Your Own Ranking
Values and Defining Multiple Values.

After you have added extended rank values to your index with the avs_setrankval procedure,
you can use the avs_search_genrank procedure to search using a Boolean query expression
and filter the results. The pRankTerms argument in the avs_search_genrank procedure can be
a filter expression containing an application-defined value type. For example, given the
Boolean query pizza NEAR "to go" and the filter expression multi?((1-3, 5), the
index is searched for all documents containing pizza, near the words to go, and then returns
only those documents whose extended value type multi is between 1-3 or 5.

Your C programs must provide a function to convert ranking values that are not entered in
numeric format. For example, your user may want to search for a part number that contains
alphanumeric characters. Because filter values are all integers, your function must be able to
convert the query string into an integer value to return a search result.

Incremental Searching
Your application can call the avs_getsearchversion procedure to return the version of the
index for the current search result. This version string can then be passed to a subsequent
search operation to limit results to those documents added to the index since the previous
search.

Indexing, Searching and Converting

2–22

The searchsince option is available on the avs_search_ex and the avs_search_genrank
procedures. This value can be passed to these procedures to limit the results of a subsequent
search to data indexed since the last search.

Proximity Searching
AltaVista Search keeps track of the positional relationships between words as it indexes them.
The advanced search capability provides support for Boolean searches, including AND, OR,
NOT and NEAR (proximity) searches. This allows for phrase searching and proximity
searching to be performed on indexed documents.

With the Developer's Kit you can use the WITHIN ## (where ## is the number of words)
command to control the number of words apart the words in your query string can be. For
example, if you want to find the word Mary within 5 words of lamb, use the Boolean query
string:

 "Mary WITHIN 5 lamb"
This query will bring a result for Mary and lamb when they are not more than 5 words apart
instead of the default of 10 words apart. Using NEAR in your search is the same as using
WITHIN 10.

Query Processing Timeout Support
A new option on the avs_search (timeout) and a new api call (avs_timer) allows multi-
threaded applications to enforce maximum query processing times.

The avs_timer procedure is used by an application's timer thread to pass a current timer value
from the application to the AltaVista search operation. In this way, search operations can be be
limited in processing duration. If the application does not have a timer thread, no search
timeouts will occur.

In avs_options.timeout, you can set the number of timer units allowed for that query. At the
start of each search, AltaVista Search sets a timer limit equal to the current timer value plus the
value of avs_options.timeout. It periodically checks the current timer value against the timer
limit. When the current timer value is greater than the limit, the search process stops and
returns the partial results accumulated so far.

Converting Documents for Indexing
The AltaVista Search Developer's Kit now provides a set of converter libraries and API calls
that you can use to convert your documents to text or HTML before indexing. The document
conversion technologies are those offered by Adobe Systems, Inc., Inso Corporation, and
Compaq Computer Corporation. Most file types are supported. For a complete list of file types
that can be converted, click here. The Developer's Kit provides the following components for
your conversion needs:

Converter
Component

Description

Converter
Libraries

The C API now comes with a document converter library (avscvt26.dll
on Windows NT, libavscvt26.a on UNIX). The avscvt.h file provides
calls that inspect the file to determine the file type and then converts the
document to either text or HTML. Note: Only PDF documents can be
converted to HTML at this time.

Indexing, Searching, and Converting

 2–23

Converter
Component

Description

ActiveX
Component for
NT Systems

For Windows NT, there are two supplemental files used with the
ActiveX component:

1. avscvt26X.dll is the component that provides an API to the ActiveX
clients, for example, Visual Basic.

2. register_avscom.bat is the batch file used with registering the
ActiveX component.

Programming
Samples

The two sample programs that use the document conversion
technologies:

1. avs_sample.c contains an example of using the new document
converter API. Using this sample program, you can covert
documents to text before adding their contents to the index.

2. vb_sample.exe is the Visual Basic program that uses the document
converter ActiveX object. (NT only)

Document
Conversion
Runtime
Directory

This directory contains the runtime libraries that must be placed in your
path for the document converters to run.

Using the AltaVista Search Intranet Compatibility API
The AltaVista Search Intranet Compatibility API allows an application to:

1. Search an index created by the AltaVista Intranet product (V2.3), and retrieve the
document data. The document data contains the document's URL, title, abstract,
language and character encoding set.

2. Add a document to an index created by the AltaVista Search Intranet product (V2.3),
or create a new index with compatible document data.

Use compatibility libraries (avsi26_mt.dll on Windows NT or libavsi26_r.a on UNIX) in
conjuntion with the procedures outlined in avs_compat.h.

When you open the index, be sure to initialize the avs_parameters structure as follows:

avs_parameters_t params = AVS_PARAMETERS_AVSI_COMPATIBILITY;

The initialization ensures that dates and other metadata are stored and retrieved in the same
format as the AVSI index.

• Use avsi_setdocdata() instead of avs_setdocdata().

• Use avsi_getdocdata() instead of avs_getdata().

• Use avsi_url2docid() to generate compatible document IDs from URLs (See
avsi_sample.c for sample code).

Note:
The AVSI index files on UNIX are owned by daemon. If documents are added to the AVSI
index through the Developer's Kit, make sure that the documents are still owned by daemon
before restarting AVSI or it will have problems reading the index.

Indexing, Searching and Converting

2–24

Restrictions:
You may share an index between an SDK application and AltaVista Search Intranet V2.3 for
searching only. The AltaVista Intranet indexer must be shut down before updating the index
with your SDK application.

3–25

3
Advanced Concepts and Techniques

Managing a Growing Index
Once indexing is in progress, there are several things you can do to manage the contents:

• Use avs_makestable to write the contents of the in-memory index to disk.

• Use avs_compact to merge and streamline existing index files on disk.

• Use avs_deletedocid to remove an obsolete document from the index.

One of the reasons AltaVista Search indexing is so fast is that newly-indexed information is
stored in memory until your application explicitly writes the information to disk. The
avs_makestable procedure writes the most recent index content to disk and integrates it with the
existing index. As a rule of thumb, you should call this procedure after approximately a half
million words are indexed. This action preserves the data and prevents the index from
consuming too much memory. You should also call the avs_makestable procedure before
closing the index if any documents have been added or deleted since the previous
avs_makestable call.

Each time you call the avs_makestable procedure, the newly-added document information in
memory is written to a new, set of files on disk. So after several makestable calls, the on-disk
index will actually consist of several sets of files. You should periodically use the avs_compact
procedure to merge the existing set of files into one. You might compact the index once a day,
during periods of least frequent use (the index is still available for queries during compacting,
but you cannot add, update, or delete documents until compacting is complete). When
compacting the index would be detrimental to your system resources, call the
avs_compact_minor procedure. This will cause compaction without recovering space from
deleted index entries.

Occasionally, a document may become obsolete and you will need to delete it from the index.
Use the avs_deletedocid procedure to remove the document from the index database. Pass the
identifier that the document received when the avs_newdoc procedure created it. The
document will be marked for deletion and at the next call to the avs_makestable procedure, it
will be removed from the index.

If there are any documents in the pending document set (those documents added since the last
call to avs_makestable), an error (AS_DOC_EXISTS) is returned and no documents are
deleted.

Note that compacting the index is needed to actually free the space occupied by deleted
documents.

Advanced Concepts and Techniques

3–26

Optimizing for Speed
The AltaVista Search index can operate in either query mode or build mode. Use query mode
when the index is relatively static and query load is high. Use build mode when updates are
frequent (and query performance does not have to be optimal).

The avs_buildmode_ex procedure provides more control over points on the build mode
spectrum. It allows one of the dynamic index parameters to be adjusted to provide less than the
maximum buildmode performance to avoid the worst case query performance hit.

The default index parameters, however, are usually adequate for all but the most demanding
applications. It is best to just leave the parameters at their default values, stay in build mode for
updates and querying, do a full compaction when it is convenient (low update and query load),
and adjust only when necessary.

If update performance is not a problem, but query performance is, try setting a value, for
example, 5 or 6, in the avs_buildmode_ex procedure (not avs_buildmode). This will cause
your program to loop more frequently through the minor compaction procedure, costing some
time, but keeping the index in a higher state of query-processing tune.

A minor compaction (using avs_compact_minor) is used during build mode to keep the index
size and complexity from exceeding reasonable bounds. It does the least amount of work it can
while accomplishing this critical task. A full compaction on the other hand tries to make the
index optimal for future query processing and updates, and takes more time to do this.
Naturally, an index is more compact after a full compaction than after a minor one.

Programming Models
With the Developer's Kit, you can use different programming models which directly effect the
performance of your indexing and querying processes.

Using the Multi-Threaded Model
The high performance model for using the Developer's kit is to do everything within a single
multi-threaded process. In this model, at most one thread is responsible for managing the index,
and as many threads as desired can issue queries. All threads use fine-grain thread locks to keep
the shared in-memory data structure stable. The index is opened only once by the main thread.
This model is often set up as a server with users' requests coming in and being serviced through
socket connections or some other mechanism.

Using the Multiple Process Model
You can also have a multiple process model: one process for handling updates and other
management functions, and as many processes as desired doing queries. The update process
should open the index in read/write (rw) mode. The other processes should open the index in
read (r) mode. This model works well on the relatively short-lived query processes, because at
a key point in the update (rw) process, it waits for all the processes in read mode to be closed
before proceeding.

In either model, only the unique thread or process which is managing the index is allowed to
issue avs_querymode or avs_buildmode calls. These calls actually change the on-disk format
of the index and incorporate compaction operations (in the case of avs_querymode) to be
effective.

The proper sequence for the update process is as follows:

Advanced Concepts and Techniques

3–27

9. Open the index in read/write mode.

10. Place the index in build mode.

11. Perform the whole set of updates.

12. Place the index in query mode.

13. Close the index.

The sequence for the query processes is as follows:

1. Open the index in read mode.

2. Issue one or more search requests and the accompanying avs_search_getdata calls.

3. Close the index.

To get the best performance, it is recommended that the update process be run during the time
of low query activity because the combination of updating and performing queries at the same
time could be detrimental to your performance.

Tuning Compaq Tru64 UNIX for Large Indexes
It is imperative for optimal indexing and searching speed to let the AltaVista Search
Developer's Kit memory-map the index files for reading. The indexer performs a lookup for
every document at indexing time to check for duplicate document identifiers. It also reads all
the data during a compaction.

To avoid using excessive virtual memory on smaller machines, the kit limits the size of files
that will be mapped.

You can modify the upper limit to the size of files that are memory-mapped. In your
application, use the cache threshold entry in the avs_parameters structure to set your cache
threshold to a large enough value to map your largest file. For example, suppose your largest
file in the index directory is less than 500 MB, set the cache_threshold parameter as follows:

param.cache_threshold = (500000000)

Increasing Virtual Memory for Processes
In order to take advantage of the higher cache threshold, you must also increase the amount of
virtual memory that processes are allowed to use. The following process settings are
recommended for large index files:

proc: max-per-proc-address-space = 137438953472
proc: max-per-proc-data-size = 17179869184
proc: per-proc-address-space = 137438953472
proc: per-proc-data-size = 17129869184

This allows your processes to have a large virtual address space.

Modifying the vm-mapentries Attribute
The vm-mapentries attribute specifies the maximum number of memory-mapped files in a user
process, and limits the number of memory-mapped files available to each process. Each map
entry describes one unique disjoint portion of a virtual address space. The default value is 200.

You may want to increase the value of the vm-mapentries attribute for very-large memory
systems to 20000. This will increase the limit on file mapping. However, this attribute affects
all processes, and increasing its value will increase the demand for memory. If there are

Advanced Concepts and Techniques

3–28

potentially many files, the number of mmap entries allowed on your system must also be high.
Set the vm-mapentries value as follows:

 vm-mapentries = 2000
 vm-maxvas = 1337438953472

Modifying the ubc-maxpercent Attribute
Indexing usually consumes a moderate amount of virtual memory and uses a large set of files.
The virtual memory subsystem and the Unified Buffer Cache (UBC), which caches file system
data, share the physical memory that is not wired by the kernel. The default value of the ubc-
maxpercent attribute is 100 (percent).

You can determine whether you should increase or lower the value of ubc-maxpercent by
looking at the amount of free space after the application has been in use for some time. Use the
vmstat command to display information about virtual memory. You should aim for a few
megabytes of free space and no page outs ever. The measurement should occur during the
indexing process because indexing uses more RAM.

Too much memory allocated to the UBC may cause excessive paging and swapping, which
may degrade performance. However, an insufficient amount of memory allocated to the UBC
may cause excessive disk I/O operations. You can reduce the value of the ubc-maxpercent
attribute but the value can only be determined by experimenting on your machine. If your
system exhibits excessive paging and swapping, reduce the value in decrements of 10%. Do not
decrease the value to the point at which file system performance is degraded.

If ubc-maxpercent is set to a low value, you may want to increase the value if your disks are
busy with file system I/O but the system has a high free page count. You should attempt to
keep in memory the working set of your processes, even if this means increasing the amount of
UBC misses.

Note: Changing the ubc-maxpercent attribute value in /etc/sysconfigtab requires that
you reboot your system. To avoid this step, you could use the dbx utility to modify the ubc-
maxpages attribute, for example:

dbx -k /vmunix
p ubc_maxpages
assign ubc maxpages = ubc-maxpages – 1000

The conversion factor between the ubc-maxpercent attribute and ubc-maxpages attribute is:

ubc-maxpages = total_phys_pages_in_machine * ubc-maxpercent/100

If you in crease the value of ubc-maxpages, the buffer cache will use the memory within 10's of
seconds if the machine is active. If you decrease the value, it takes much longer (tens of
minutes) for the change to take effect. Once you have established the right value, calculate the
value of ubc-maxpercent, and modify /etc/sysconfigtab using the new value.

How the Public AltaVista Search Site Sets the Virtual Memory
Attributes
The AltaVista Search site on the web has the following setting for its virtual memory attributes:

 vm-mapentries = 1000
 vm-maxvas = 1337438953472
 ubc-maxpercent = 70

Advanced Concepts and Techniques

3–29

The following are settings for processes:

 max-per-proc-address-space = 137438953472
 max-per-proc-data-size = 17179869184
 per-proc-address-space = 137438953472
 per-proc-data-size = 17179869184
 max-proc-per-user = 256
 max-threads-per-user = 2048

Typically these machines are larger than average: 8-processor, 6-8 GB.

Indexing with Database Applications
With the Developer's Kit, the application developer has total control over what is indexed, what
is retrieved from a search, and how to interpret the search results before showing them to the
user. Assuming the application has access to the database, the application can simply store the
retrieval identifier or the primary key with the index data and then retrieve and compute the
appropriate display from the database. It is even possible to store the whole row as the
retrievable index data and avoid query-time access to the database if your index is small
enough and does not require frequent reindexing.

The following steps describe the process you use to create an index containing the contents of
your database:

1. Determine the collection of data from the database that constitutes a document
statement, for example, tables, records, or reports.

2. For each document determine the metadata that uniquely associates the document with
the data source from step 1 (a URL, an SQL instruction, and so forth).

3. Using the Developer's Kit API calls, add words to the index.

4. Define a user interface to query the index.

5. Use the metadata from the documents returned by the query to retrieve the data source
and display the results. For an example of a database implementation, see the
avs_sampledb.cpp in the dao_sample directory.

Advanced Concepts and Techniques

3–30

Customizing Your Index with the Developer's Kit
In a new parameter block (avs_parameters) passed to the avs_open procedure, you now have
control over the following:

• Index scaling parameters with ntiers and nbuckets parameters.

At index creation, you can set the exact number of buckets and the maximum number
of tiers to be used. Buckets spread the index entries across multiple files. Tiers are
incremented by one every time avs_makestable is called. They are decreased by
avs_compact. If these parameters are set to zero (0), the default values used are:

Platform Tiers Buckets

Windows NT and Solaris 6 4

Compaq Tru64 UNIX 12 12

The tiers are tunable for special purposes within a nominal range from 4-40. The index
uses fewer resources when these numbers are smaller, both in terms of the number of
files used and the number of files the index has open at once. All of which could effect
memory usage and other performance metrics.

The maximum number of tiers are not necessarily the active tiers. The number of
active tiers depend on what is occurring with the index, for example, avs_makestable
adds a tier (unless the maximum setting would be exceeded). A full compact reduces a
tier and, therefore, gives the best subsequent query performance, and at the same time
recovers the index space of the deleted documents.

The tier value set at indexing time will be used by the index as the maximum number
of tiers throughout the life of the index. After the index has been built, do a full
compaction of the index. For small updates to the index, use avs_buildmode_ex with
a smaller tiers value. Call avs_makestable and avs_compact_minor as needed

Periodically, perform a full compaction at a time when system resources are not under
a heavy load. Full compactions take longer on a larger index. Do not use
avs_querymode after every update - just use avs_buildmode_ex and
avs_compact_minor. The only effect of avs_querymode is to do a full compaction and
set the tier limit to a smaller number.

Memory mapping:

The cache_threshold parameter sets the maximum size in bytes of an index file that
can be memory-mapped. The default is 500,000. If you have a large index and lots of
virtual memory, you can set this number to a larger value to get better performance for
the index.

• Index Format:

The indexformat parameter allows you to force the on-disk format to a specific version
of the index. The default value is the 'latest' index format, which is currently version 2.
Version 1 indexes were slightly smaller, but also slightly slower to search. With
version 2, the maximum allowable size for any index file on NT 4.0 and SUN
platforms is 512MB; with version 1 the size limitation was 2 GB. Normally, the
default index format should be sufficient for most indexing needs.

Advanced Concepts and Techniques

3–31

• Wildcard grammar rules:

You can change the minimum number of characters required in a search word before a
wild card character using the chars_before_wildcard parameter. The default is 3.

• Unlimited wild word searching

The normal behavior of the wild card search expansion is that each wild-carded term
will match a maximum of 50 words. If there are more than 50 words that match, the 50
most frequent words in the index will be used.

To disable this behavior, set unlimited_wild_words parameter to 1.

• Ranking word maximum frequency:

The ignore_thresh parameter is expressed in one hundredths of a percent, for example,
1000 = 10% Any word that occurs in the index more frequently than this percentage
is not counted for ranking purposes. The word is still counted for Boolean ranking.

This is a performance optimization. If this value is set to be smaller than the default
(1000), ranked searches will run faster but the ranking is less precise. If the value is set
higher than the default, the ranked search is slower, but the ranking is more precise.
The range for this parameter is 1- 1000.

• Optional indexing features:

If you have no need for date ranking, date-range searching, or search-since features,
they can be disabled in the avs_parameter block options. All these features are
enabled by default. By selectively disabling some of these features, you can achieve a
smaller index size. To disable, set one or more of the following to 0:

• AVS_OPTION_SEARCHSINCE

• AVS_OPTIONS_RANKBYDATE

• AVS_OPTION_SEARCHBYDATE

• Assumed character set:

The index supports three possible character sets. You can set the character set to one
of the following:

• ISO LATIN1

• ASCII8

• UTF8

The default character set is ISO LATIN1. Mixing character sets in an index is not
supported.

Initializing the avs_parameter Structure In the C API
To declare and initialize the avs_parameters structure to the default values, use the following
statement in your application:

avs_parameters_t myparms = AVS_PARAMETERS_INIT;
Use avs_parameters_avsi_compatibility to initialize the avs_parameters__t
structure when opening an AltaVista Search Intranet Index.

Advanced Concepts and Techniques

3–32

Modifying the Parameters in the C API
This example modifies each of the possible parameters by setting each one to its (already
initialized) default value. Change to different values if needed.

myparms.ignored_thresh = 1000;
myparms.chars_before_wildcard = 3;
myparms.unlimited_wild_words = 0;
myparms.cache_threshold = 500000L;
myparms.indexformat = 0;"
myparms.options =
AVS_OPTION_SEARCHSINCE |
AVS_OPTION_RANKBYDATE |
AVS_OPTION_SEARCHBYDATE;
myparms.charset = AVS_CHARSET_LATIN1;
myparms.ntiers = 0;
myparms.nbuckets = 0;

Opening the Index
To open an index using the initialized and modified avs_parameters, use the following:

 error = avs_open (&myparms, indexpath, mode, &handle);

 4–33

4
Using the Sample Programs

This section describes the several sample programs provided with the AltaVista Search
Developer's Kit Version 2.6. The following figure displays the directory structure under the
source directory:

• The c_sample directory contains a sample C program (avs_sample.c) that uses most of
the available procedures to build a simple text index and uses command-line querying.
It also includes a multi-threaded search command contained in a separate module
(avs_MTsearch.c). The cvttest.c module lets you test the conversion of a file to text.

• The cpp_classes directory contains an example program (avs_sample.cpp) that
behaves similarly to the avs_sample.c program using one possible implementation of a
C++ API. This API is used in the dao_sample as well.

Using the Sample Programs

4–34

• The dao_sample directory contains a database example that is specific to Windows
NT and uses Microsoft Foundation Classes (MFC) and Data Access Objects (DAO) to
build and search an index created from a Microsoft Access database.

• The java_classes directory contains sample Java classes to present an Object Oriented
interface layered on top of the C API.

• The tcl_sample directory contains a sample Tcl application (avs_sample.tcl) similar to
the avs_sample.c program.

• The vb_sample contains a sample Visual Basic application (including a working
executable) that demonstrates the use of the Developer's Kit ActiveX control for
Windows NT.

• The avsi_sample directory contains a sample program that demonstrates how to use
the AltaVista Search compatibility API with the AltaVista Search Intranet V2.3
product.

Only the C Language and Visual Basic APIs are supported for this release. The other sample
programs are used to demonstrate an implementation in the respective languages (Tcl, C++, or
JDirect).

Understanding the C Sample Program
This section is a quick summary of the avs_sample.c program, organized by typical tasks. For
information on compiling the programs, and using the command line tasks, refer to the section
Compiling and Linking the C Sample Program.

What the Sample Program Does
If you learn best by example, you can use this program as a starting point for coding your own
application. You can find the sample files in the directory in which you installed the developer's
kit. The sample programs are compiled for you and the executable files are located in the the
following directories:

• unix/aix

• unix/dunix

• unix/linux_ix86

• unix/solaris

• win32/alpha

• win32/ix86

Using the Sample Programs

4–35

Try some of the tasks listed below.

• Create an index from a set of text files.

• Search the index you have created.

• Perform a Boolean search using ranking terms.

• Perform a multi-threaded search.

• Count the word occurrences in the index.

• Delete a file from the index.

• Compact the index.

Creating an Index
Suppose you want to create an index containing all the words in a given set of text files. For the
UNIX platforms, the files you want to include in the index could be in a separate directory, so
they can be read from standard input. To read the files from standard input and pipe them to
your application, use the following command line:

ls *.txt | avs_sample -c newdoc -i <indexdir>

Another way to specify files to be added to the index is to create a text file (<filelist>)
containing the list of files (using the absolute path) to be indexed, one per line. Specify this text
file as follows:

avs_sample -c newdoc -i <indexdir> -f <filelist>

where newdoc is the command and indexdir is the path to the index directory (the index
directory must already exist). As a result, all the words in the text files are added to the index.
One document is created for each text file. Each file is identified in the index by the name of
the text file.

On Microsoft Windows NT, from the MS-DOS level, you can create your index in the same
way as long as the files you want to include are in the same directory as your sample program
and DLL files. Or you can put the location of the executable and DLL files in your path. To
read the files from your index directory and pipe them to your application, use the following
command line:

> dir/b *.txt | avs_sample -c newdoc -i <indexdir>

Searching an Index
To perform a simple search of the index, use the following command line:

avs_sample -c search -i <indexdir> -q "<simple query expression>"

where indexdir is the pathname to the index directory, and <simple query expression> is the
query expression which may contain "+" and "-" filter expressions. For example, use the form

avs_sample -c search -i testdir -q "pizza \"deep dish\" +Chicago"

Using the Sample Programs

4–36

to search your index for Chicago, deep dish pizza. You can perform an advanced search by
using -b instead of -q in your command line.

Performing a Boolean Search with Ranking Terms
Ranking words determine the order of listings in the results display. When you do not specify
any ranking words, AltaVista Search returns the results in no particular order. Ranking is a very
important way to ensure that the documents of most interest to you appear at the top of the
results list.

To rank matches, enter terms in the Ranking argument; otherwise, the results will appear in no
particular order. You could enter words that are part of your query or enter new words as an
additional way to refine your search. For example, you could further narrow a search for
COBOL AND programming by entering advanced and experienced in the Ranking argument.

Note: If you are interested only in a count of the number of documents that match your query,
you may not want to use ranking.

To perform a boolean search with ranking terms, use the following syntax:

avs_sample -c search -i <index path> -b <boolean query> -q
<ranking terms>

where index path is the full path name of the index directory, boolean query is the query
expression using the Boolean form (AND, OR, NOT, NEAR, WITHIN), and ranking terms is
the term or terms that effect the ranking of results returned by the search. Documents that have
the most frequent occurrence of the specified ranking term or terms will be at the top of the
search results. For example:

avs_sample -c search -i indexdir -b "vegetable AND (NOT broccoli)"
-q "carrot"

Documents with the most frequent occurrences of the term "carrot" will be at the top of the
search results.

Restricting Advanced Searches by Date
You can restrict an Advanced Search to find only documents last modified during a specific
time frame. The date of the document is set by the application when the document is added to
the index.

When entering To and From dates, use the format dd/mmm/yy, where dd is the day of the
month, mmm is the name of the month, and yy is the last two digits of the year. Be sure to use
the name of the month instead of a number; this eliminates ambiguity between date formats in
different countries. For example, use 09/jan/96.

If you omit the year when entering a date, the AltaVista assumes that the date is in the current
year. If you omit both the year and the month and specify only numbers for days, the search
assumes the current month and year. For example, entering a From date of 09/jan indicates that
you want documents dated no earlier than January 9 of the current year. Entering a From date
of 09 indicates that you want documents dated no earlier than the ninth day of the current
month in the current year. To perform a boolean search with date ranges, use the following
syntax:

Using the Sample Programs

4–37

avs_sample -c search -i <index path> -b <boolean query with date
ranges>

where index path is the full path name of the index directory, boolean query with date ranges is
the Boolean query expression including the date ranges which restrict the dates and determine
the results returned by the search. For example:

avs_sample -c search -i indexdir -b "vegetable AND (NOT broccoli)
[01/jun/97 - 31-jul-97]"

Only documents that fall within the date ranges are returned by the search results.

The date ranges are enclosed with square brackets ([]). You can use the following formats for
date ranges:

• dd/mmm/yy - dd/mmm/yy

• dd/mmm/yyyy - dd/mmm/yyyy

• mm/dd/yy - mm/dd/yy

• mm/dd/yyyy - mm/dd/yyyy

• dd/mmm/yy - (for documents modified on or after the specified date)

• - dd/mm/yy (for documents modified on or before the specified date)

Performing a Multi-Threaded Search
To perform a multi-threaded search, use the following command line:

avs_sample -c mtsearch -i <indexdir> -q <queryfile>

Where queryfile is a text file containing a set of query strings which are processed by one of the
threads.

Counting Word Occurrences in Your Index
To count how many times a word occurs in the index, use the form:

avs_sample -c counts -i <indexdir> -q <word>

Deleting a Document from the Index
To delete a document from the index, use the following command:

avs_sample_cpp -i index -c delete -d <docid>

Compacting an Index
To compact an index after you have made numerous additions and deletions, use the following
command:

avs_sample -c compact -i <indexdir>

Using the Sample Programs

4–38

Compiling and Linking the C Sample Program
The AltaVista Search Developer's Kit gives you the option of compiling your application to
have either single-threaded or multi-threaded capabilities. To compile and link your program
on any of the supported platforms, you must have included the appropriate header file in your
source code. The following table lists the additional files you need to compile, link and execute
your program:

Operating System Files in local directory

The Unix platforms
avs.h
libavs26.a
or libavs26_r.a

Microsoft Windows NT

avs26.dll
or avs26_MT.dll
avs.h
avs26.lib or avs26_MT.lib

The following table lists the commands and switches used in running the program:

Switches Description

-b <boolean query string>

-c
<command> One of newdoc, search,
genrank, counts, compact, delete, mtsearch
(with multi-threaded build only)

-d <docid>

-f <filename> file contains list of files to
index

-i <index name>

-l Turn off detailed logging of queries for
mtsearch command

-q

<query string> use query string for rank
only
<query file> file with query string(s) for
mtsearch command

+q <query string> use query string for rank
and selection

-s <search since string>

-t <number of threads> for mtsearch
command (greater than 0)"

Using the Sample Programs

4–39

Compiling on a Compaq Tru64 UNIX System
The following command compiles the file avs_sample.c and creates an executable called
avs_sample with the single threaded library:

cc -o avs_sample avs_sample.c libavs26.a -lm

or with the multi-threaded library:

cc -DPTHREADS -pthread -o avs_sample avs_sample.c avs_MTsearch.c
 libavs26_r.a -lm -lpthreads

Compiling on Microsoft Windows NT
The following command compiles the file avs_sample.c and creates an executable called
avs_sample.exe with the single threaded library:

cl avs_sample.c /DWIN32 /D_NDEBUG /D_CONSOLE /ML avs26.lib
or with the multi-threaded library:

cl /Feavs_sample.exe avs_sample.c avs_MTsearch.c
/DWIN32 /D_NDEBUG /DPTHREADS /D_CONSOLE /MT avs26_MT.lib

Compiling on Solaris and Linux Systems
You can compile the file avs_sample.c and create an executable called avs_sample with a
single-threaded library:

cc -o avs_sample avs_sample.c libavs26.a –lm

or with the multi-threaded library:

cc -DPTHREADS -o avs_sample avs_sample.c avs_MTsearch.c
libavs26_r.a -lpthreads –lm

Note: The indexing process opens many files. If the open file descriptor limit is too low, your
program will abort on the Sun Solaris system. Set the descriptor limit to unlimited as follows:

 limit descriptors unlimited (csh)
or
 ulimit -n unlimited (sh)

Compiling on AIX Systems
You can compile the file avs_sample.c and create an executable called avs_sample with a
single-threaded library:

cc -o avs_sample avs_sample.c libavs26.a –lc

or with the multi-threaded library:

cc_r -o avs_sample avs_sample.c avs_MTsearch.c
libavs26_r.a -lpthreads -lc_r

Using the Sample Programs

4–40

Compiling and Linking with Document Converters
By default, the document converters are not compiled into the C sample program. To use the
converter API, compile the sample program according to the platform-specific instructions
above with the following additions:

• Compile with the symbol DOC_CONVERTERS defined:

/DDOC_CONVERTERS (Windows NT) or -DDOC_CONVERTERS (UNIX)

• Link with the library avscvt26.dll (Windows NT) or libavscvt26.a, libsc_da.so, and
libsc_ta.so (Unix)

• Make sure that the document converter directory files are available at runtime. For
Windows NT, add the directory to the PATH environment variable. For UNIX, set the
environment variable LD_LIBRARY_PATH to this directory.

Note: The document conversion API is not available on the AIX or Linux/Intel platforms.

Using the Document Conversion Test Program
A new document conversion test program has been included with the product software. This
program invokes the document converters to convert a specified file to text. The program,
cvttest.exe or cvttest can be found in the platform specific directory. The source file
cvttest.c can be found in the source/c_sample directory.

Understanding the Database Example
The sample database application (dao_sample\avs_sample_db.cpp) introduces the concepts and
techniques associated with using the AltaVista Search Developer's Kit to index a Microsoft
Access database. This example has the following characteristics:

• Runs on Microsoft Windows NT.

• Uses Microsoft's Visual C++ Version 5.0.

• Uses the sample Developer's Kit C++ API implementation (cpp_classes).

• Access to database through Data Access Objects (DAO).

• Sample Microsoft Jet Database created in Microsoft Access.

Applications using other data access methods, such as, Open Database Connectivity (ODBC)
would involve similar design decisions with slightly different data exchange characteristics.

The sample database application demonstrates the following tasks:

• Creating an index from a database

• Searching the generated index

• Retrieving data from the database as a result of a search

• Deleting a record from the database and the index

Creating the Index
The application builds an index from the database creating one document for every record of a
given database table. As each document is added to the index, a unique document identifier is
generated to allow the original database record to be retrieved following a successful search.

Using the Sample Programs

4–41

For simplicity, this sample assumes one database per index. In addition, only the tables (versus
queries, forms, reports) can be indexed since the tables represent the full compliment of data in
the database. With these limitations, the document id is constructed from the name of the table
and the primary key value of the record. Unlike record positional information, the primary key
information in a table remains constant across sessions. Additional record specific information
not subject to searches is included in the document data.

Searching the Index
Once the document id has been constructed, the fields of the record are indexed by adding them
to the document. In order to allow field-specific searches, a field identifier is added along with
the contents of the field in the index. A primitive user interface takes a user specified query
string and searches the index. Search results are displayed in a list box to allow the user to
select specific document from the index.

Retrieving Data from the Database
After the user selects one of the documents returned from a search, the corresponding database
record can be displayed. This part of the application takes the record-specific information
stored in the document id and document data to locate the appropriate record in the appropriate
table in the database.

Deleting a Document
The sample database application also allows you to delete a selected document from the index
and the corresponding record from the database provided the record does not have relationships
with other records in the database. This process uses the same method of retrieving the database
record from the document id and document data stored in the index.

Synchronizing the Index with the Database
To keep the index synchronized with the contents of the database, use one of the following
methods:

1. If all fields in all database tables are kept in the index, keeping the index current is
simply a matter of periodic reindexing. Reindexing the database will behave in the
same manner as a special update procedure.

2. If only selected fields of selected tables are kept in the index, an update procedure
would need to use information about the contents of the index for selective updates.
Such information could be stored in a file upon index creation.

The sample database application and all files used to build and run it can be found in the
dao_sample subdirectory of the AltaVista Search Developer's kit. See the ReadMe.txt files for
an outline of the files included with this sample. See the source code comments for more details
on the how the application works.

This sample database application can be run on a non-development system provided the
following files are present:

• MSVCRT.DLL

• MFC42.DLL

• DAO and the Microsoft Jet Database Engine (in dao\disk1\setup.exe)

Using the Sample Programs

4–42

• OLE Automation (in oadist.exe) if requested during DAO setup.

These items are included on the kit in the msvc directory tree.

The DAO setup has been redistributed from the VC++ V5.0 CD and the OLE Automation
setup can be downloaded from Microsoft.

See articles @167523 and @164529 from Microsoft Technical Support for more information

Sample Java Application
The Developer's Kit contains a sample JDirect implementation. The sample Java classes
present an object oriented (OO) interface layered on top of the the C API. The Java sample
directory contains documentation and a working sample.

Tcl Sample Application
You can use the Tcl programming language on multiple platforms to access the AltaVista
Search Developer's Kit. The kit includes an adaptor module (avstcl) that implements the
AltaVista Search API as a loadable Tcl extension. It has been tested on NT with Tcl Version
8.02 and using Microsoft Visual C++ 5.0.

To run on an NT x86 system:

1. Install Tcl using tcl80p2.exe if you do not already have it installed on your system.

2. Use the supplied avstcl MSVC project files to build the extension.

3. In the Tcl shell, a command like load release/avstcl.dll avs will load the
extension (see avs_sample.tcl).

To run the application use the following command line:

tclsh80 avs_sample.tcl -i index -c search -q "word"

Visual Basic Sample Application
You can use Visual Basic on Windows NT platforms to access the AltaVista Search
Developer's Kit. The kit includes an ActiveX control embodying the interface to AltaVista
Search (avs26X_mt.dll). The control can be found in the ix86 or alpha directory after the
installation.

In addition, this kit includes an ActiveX control for the document converters called
avscvt26X_mt.dll.

For more information on this sample program, see the Readme.txt file included in the
win32\source\vb_sample directory.

AltaVista Search Intranet Compatibility API Sample
You can now add or create an index compatible with the AltaVista Search Intranet V2.3
(AVSI) product. The Developer's Kit AVSI compatibility API lets your application read data
from and write data to indexes created by AVSI.

The C API versions of the AVSI compatibility components are called avsi26_mt.dll and
libavsi26_r.a for Windows NT and Unix, respectively. Please see the include file
avsi_compat.h (source directory) and the sample code in avsi_sample.c
(source/avsi_sample directory) for information on how to use the C API.

Using the Sample Programs

4–43

The AVSI index files on UNIX are owned by daemon. If documents are added to the AVSI
index through the Developer's Kit, make sure that the documents are still owned by daemon
before restarting AVSI or it will have problems reading the index.

Note: The AltaVista Search Intranet Compatibility API is not available on the AIX or
Linux/Intel platforms.

5–45

5
C Programmer's Reference

This reference section provides a description of the C language procedures, data structures, and
status codes provided by the AltaVista Search Developer's Kit.

Contents
Alphabetical Listing of
the C Language
Procedures

Access the Index Data Structures Document
Converter API

Updating the Index Searching the
Index

Status Codes AVSI
Compatibility API

C Programmer’s Reference

5–46

avs_adddate
Indexes the supplied date in standard format at the indicated location.

C Synopsis

AVSAPI(int) avs_adddate (
 IN avs_idxHdl_t idx,/* Index handle (from avs_open) */
 IN int yr,/* date to add */
 IN int mo,/* date to add */
 IN int da,/* date to add */
 IN long startloc/* location */
);

Arguments
idx The index handle.

yr Integer that specifies the year.

mo Integer that specifies the month.

da Integer that specifies the day.

startloc Location in the document for the date.

Description
The avs_adddate procedure indexes the supplied date in standard format at the indicated location. Dates added
with avs_adddate can be retrieved by using range searches. Note that the date returned with a search result is the
date supplied by avs_setdocdate not avs_adddate.

Return Values
AVS_OK or an error code.

See also
• avs_addfield

• avs_addword

• avs_setdocdate

C Programmer’s Reference

5–47

avs_addfield
Marks a set of locations as belonging to a field.

C Synopsis

AVSAPI(int) avs_addfield (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN const char *pFname, /* name of field (no spaces allowed) */
 IN long startloc, /* first location of field */
 IN long endloc /* first location AFTER field */
);

Arguments
idx The index handle.

pFname String that specifies the name of the field to be added to the index.

startloc Location of the first word in the field.

endloc Location of the first word that follows the field.

Description
The avs_addfield procedure marks a set of locations in a document as belonging to a field. The startloc and
endloc arguments define the boundaries of the field. Application users can submit queries for specific contents of
the named field, using the format fieldname:value.

Return Values
AVS_OK or an error code.

See also
• avs_addword

C Programmer’s Reference

5–48

avs_addliteral
Adds a single word exactly as entered to a document index.

C Synopsis

AVSAPI(int) avs_addliteral (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN const char *pWord, /* word to add */
 IN long loc/* location within document */
);

Arguments
idx The index handle.

pWord Single string that specifies the word to add.

loc Location in the index of where to add the string to the index.

Description
The avs_addliteral function adds a single word without interpretation to a document index.This function does
not scan the literal string in any way, but rather adds it to the index as is. Use with caution or not at all, as words
added this way are possibly not searchable with the standard query procedures.

To perform a search when the literal string you are looking for contains special characters (for example, the
forward slash (/)), you can use curly braces({}) in the Boolean (advanced) query string as in the following
example: {cnn/xyz}. All characters between the matching curly braces are treated as a word, except the asterisk
(*) which still works as a wildcard.

Note: Words starting with a non-alphanumeric character are reserved for internal use.

Return Values
This function returns AVS_OK or an error code.

C Programmer’s Reference

5–49

avs_add_ms_callback
Adds a makestable callback function.

C Synopsis

AVSAPI (int) avs_add_ms_callback (
 IN avs_idxHdl_t pHdl, /* ptr to index handle */
 IN int (*func) (avs_idxHdl_t, void *), /* callback function */
 IN void *data /* data to pass to callback function */
);

Arguments
pHdl Pointer to the index handle.

(*func) Callback function.

*data Data to pass to the callback function.

Description
The avs_add_ms_callback procedure is a synchronization point provided by AltaVista Search to the application
during the processing of an avs_makestable call. The default AltaVista Search behaviour is to wait for any other
search processes that might have the index open for a read operation to close the index before continuing; this is
to avoid the potential for inconsistent search results in any of those other processes. This behaviour is not needed
if the application is all in one process.

If the application provides its own ms_callback procedure through the avs_add_ms_callback call, AltaVista
Search will call this procedure instead of performing its default synchronization processing. This call is made
after the newly indexed data has been written to disk but before the new index version becomes available to any
other threads.

Return Values
AVS_OK or an error code.

See also
• avs_makestable

C Programmer’s Reference

5–50

avs_addvalue
Indexes the supplied value at the indicated location.

C Synopsis

 AVSAPI(int) avs_addvalue (
 IN avs_idxHdl_t idx,/* Index handle (from avs_open) */
 IN const avs_valtype_t valtype,/* type and */
 IN unsigned long value,/* value to add */
 IN long loc/* location */
 ;

Arguments
idx The index handle.

valtype The value type.

value The value to be indexed.

loc The location in the document.

Description
The avs_addvalue procedure indexes the supplied value at the specified location in the index.

Return Values
AVS_OK or an error code.

See also
• avs_define_valtype

C Programmer’s Reference

5–51

avs_addword
Adds words to the document index.

C Synopsis

AVSAPI(int) avs_addword (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN unsigned char *pWords, /* words to add */
 IN long loc,/* location to add words */
 OUT long *pNumWords /* number of words added */

Arguments
idx The index handle.

pWords Pointer to the words to add to the index.

loc Location value to assign to the first word.

*pNumWords Number of words added.

Description
The avs_addword procedure adds words to the index. A word is defined as a contiguous string of alphanumerics,
bounded by non-alphanumerics (like spaces and special characters), as defined in the ISO Latin-1 standard.

It should be called by a filter procedure, which prepares a block of text for indexing. The avs_addword
procedure returns the number of words added to the index. Usually, the next call to avs_addword will be given a
starting location which is *pNumWords (the number of words added) higher than the last call.

Return Values
AVS_OK or an error code.

See also
• avs_adddate

• avs_addfield

• avs_addliteral

• avs_addvalue

C Programmer’s Reference

5–52

avs_buildmode
Optimizes your index for building or adding documents.

C Synopsis

AVSAPI(int) avs_buildmode (
 IN avs_idxHdl_t idx /* Index handle (from avs_open) */
);

Arguments
idx The handle to the opened index.

Description
The avs_buildmode procedure optimizes the specified index for building or adding to the index. Querying
during this state would degrade the response to the query. This procedure could be called from your application
for those instances when you want to build an index and users would be unlikely to query the index. The new
mode takes effect immediately. This state of the index will be retained for the next time the index is opened, if a
call to avs_makestable or avs_compact is made.

Return Values
AVS_OK or an error code.

See also
• avs_compact

• avs_makestable

• avs_newdoc

• avs_querymode

C Programmer’s Reference

5–53

avs_buildmode_ex
Optimizes your index for building or adding documents, and also sets the number of tiers.

C Synopsis

AVSAPI(int) avs_buildmode_ex (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN int ntiers /* max tiers to use */
);

Arguments
idx The handle to the opened index.

ntiers The maximum number of tiers to use.

Description
The avs_buildmode_ex procedure optimizes the specified index for mixed indexing and searching the index by
setting the maximum number of tiers to use. The tiers are tunable for special purposes within a nominal range
from 4-500. Smaller values are appropriate for more searching while the larger values for more indexing.

The tiers parameter value determines the maximum number of sets of buckets to which the index can grow
during operations that add, delete, or update the index. Each call to avs_makestable creates a new tier in the
index, and calls to avs_compact or avs_compact_minor are then used to reduce the tiers again. When building a
very large index, it is better to have a larger value as it reduces the number of compactions needed during
building. However, query operations may take longer when more tiers are in use because there are more index
files to examine for each index entry.

Buckets are the hash modulus for splitting the index by word. This parameter value determines the number of the
index files across which index entries are spread (by hashing). If this number is increased, the number of index
files is increased but the size of the individual files should be smaller

The maximum number of files used by the index is approximately 4*buckets*tiers. The index uses fewer
resources when these numbers are smaller, both in terms of the number of files used and the number of files the
index has open at once, which could effect memory usage and other performance metrics.

Return Values
AVS_OK or an error code.

See also
• avs_compact

• avs_makestable

• avs_newdoc

• avs_querymode

C Programmer’s Reference

5–54

avs_close
Closes a specified index.

C Synopsis

AVSAPI(int) avs_close (
 IN avs_idxHdl_t idx /* Index handle (from avs_open) */
);

Arguments
idx The handle to the opened index.

Description
The avs_close procedure closes the specified index and releases all resources.

Return Values
AVS_OK or an error code.

See also
• avs_makestable

• avs_newdoc

• avs_open

C Programmer’s Reference

5–55

avs_compact
Causes one level of compaction on the index.

C Synopsis

AVSAPI(int) avs_compact (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 OUT int * bMore_p /* TRUE iff more compaction indicated */
);

Arguments
idx The index handle.

* bMore_p Integer value returned to indicate whether more compaction is necessary (1 if yes, 0 if no).

Description
The avs_compact procedure causes one or more levels of compaction on the index. If the returned value of
bMore_p is 0, the compaction is complete. If the returned value is 1, call the avs_compact procedure again to
further compact the index.

You should compact the index periodically or after a series of updates is complete. Compacting the index
improves subsequent query performance and frees the space used by documents that have been deleted. It is
possible to submit search queries to the index (in other threads) while it is being compacted, but you cannot add,
update, or delete information until compaction is complete.

Return Values

Value Returned Description

0 The compacting of the index is complete.

1 Further compacting of the index is required.

See also
• avs_compactionneeded

• avs_compact_minor

• avs_makestable

C Programmer’s Reference

5–56

avs_compactionneeded
Returns a non-zero value if the index needs compaction.

C Synopsis

AVSAPI(int) avs_compactionneeded (
 IN avs_idxHdl_t idx /* Index handle (from avs_open) */
);

Arguments
idx The index handle.

Description
The avs_compactionneeded returns non-zero value if the index needs compaction. When writing your
application, it is reasonable to test if compaction is needed after each call to avs_makestable. If compaction is
needed, your application should perform an avs_compact_minor loop until no more compaction is needed. If
you defer the compaction too long, then eventually the makestable process will get infinitely slow.

Return Values
Returns 0 or a non-zero integer

See also
• avs_compact

• avs_makestable

C Programmer’s Reference

5–57

avs_compact_minor
Causes compaction of the index with as little impact on system resources as possible.

C Synopsis

AVSAPI(int) avs_compact_minor (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 OUT int * bMore_p /* TRUE iff more compaction indicated */
);

Arguments
idx The index handle.

* bMore_p Integer value returned to indicate whether more compaction is necessary.

Description
The avs_compact_minor procedure causes one or more levels of compaction on the index but without
recovering space from deleted index entries. Use this procedure when the effects of regular compaction would be
detrimental to your system resources. If the returned value of bMore_p is 0, the compaction is complete. If the
returned value is 1, call the avs_compact_minor procedure again to further compact the index.

You should compact the index periodically or after a series of updates is complete. Compacting the index
improves subsequent query performance. It is possible to submit search queries to the index while it is being
compacted, but you cannot add, update, or delete information until compaction is complete.

Return Values

Value Returned Description

0 The compacting of the index is complete.

1 Further compacting of the index is required.

See also
• avs_compact

• avs_makestable

C Programmer’s Reference

5–58

avs_convert_file2html
Converts a document to an HTML file.

C Synopsis

AVSAPI (int) avs_convert_file2html (
 IN char *p_docpath, /* pathname to document */
 OUT char *p_htmlpath, /* pathname to a file to contain converted HTML
*/
 OUT int *pErr /* converter error */
);

Arguments
*p_docpath Pathname to the document.

*p_htmlpath Pathname to a file to contain the converted HTML.

*pErr Converter error code.

Description
The avs_convert_file2html procedure converts a document to HTML. You must specify the pathname to the
document to be converted as well as specify a pathname to the file which is to contain the converted text. At this
time, the only file type that is able to be converted to HTML is the Adobe PDF file.

Return Values
AVS_OK, AVS_CVT_ERR or AVS_CVT_UNSUPTYPE.

See also
• avs_convert_file2text

• avs_convert_init

C Programmer’s Reference

5–59

avs_convert_file2text
Convert a document to a text file.

C Synopsis

AVSAPI (int) avs_convert_file2text (
 IN char *p_docpath, /* pathname to document */
 OUT char *p_textpath, /* pathname to a file to contain converted text
*/
 OUT int *pErr /* converter error code */
);

Arguments
*p_docpath Pathname to the document.

*p_textpath Pathname to a file to contain the converted text.

*pErr Converter error code.

Description
The avs_convert_file2text procedure converts a document to text. You must specify the pathname to the
document to be converted as well as specify a pathname to the file which is to contain the converted text. The
document contents are analyzed before conversion to determine the document type.

Note: The file containing the converted text may contain no line ending characters.

The file types which are supported for conversion are listed in the following table: c_ref.htm - doctypes

File Type Versions Valid Extension(s)

Access through 2.0 MDB

Adobe Acrobat Portable Document
Format

2.1, 3.0 PDF

Adobe Illustrator through 6.0 AI

Adobe PostScript, Encapsulated
PostScript

Level 2 PS, EPS

Ami Draw --- SDW

AMI/AMI Professional through 3.1 SAM

AutoCAD Drawing Interchange
Format

through 13 DXF

AutoCAD Native Drawing Format 12 and 13 DWG

AutoShade Rendering File Format --- RND

batch file --- BAT

bitmaps (including OS/2 DIB) Windows BMP, RLE, ICO, CUR, OS2

CCITT Group 3 Fax FXS

Computer Graphics Metafile ANSI, CALS, NIST, CGM

C Programmer’s Reference

5–60

File Type Versions Valid Extension(s)

3.0

Corel Clip Art Format --- CMX

CorelDraw through 7.0 CDR, CDW

DataEase 4.X DBA, DBM

dBASE through 5.0 DBF

dBXL 1.3 DBF

DCX (multi-page PCX) --- DCX

DIGITAL WPSPlus through 4.1 WPL, DX

DisplayWrite 2 & 3 all versions TXT

DisplayWrite 4 & 5 through release 2.0 DOC

Enable 3.0, 4.0, 4.5 300, WPF, SSF, DBF

executables --- EXE, DLL

First Choice through 3.0 SS, FOL

FoxBase 2.1 DBF

FrameMaker (including vector and
raster format)

through 5.0 FMV

Framework 3.0 FW3

Freelance 1 and 2 (Windows); 96
(Windows 95); 2.0
(OS/2)

PRZ, PRE

GEM Paint --- IMG

Graphics Environment Manager
Metafile

bitmap and vector GEM

Graphics Interchange Format --- GIF

GZIP gz

Harvard Graphics 2.X and 3.X CHT, CH3

Hewlett Packard Graphics Language 2.0 PGL

HyperText Markup Language through 3.2 HTML, HTM, ASP, SHTML,
NSF

IBM Final Form Text all FFT

IBM Graphics Data Format 1.0 GDF

IBM Picture Exchange Format 1.0 PIF

IBM Revisable Form Text all RFT

IBM Writing Assistant 1.01 IWA

JPEG all JPG, JPEG, JIFF

JustWrite through 3.0 JW

Kodak Photo CD 1.0 PCD

C Programmer’s Reference

5–61

File Type Versions Valid Extension(s)

Legacy through 1.1 CHP

Lotus 1-2-3, 1-2-3 Charts through 97 (DOS and
Windows)
through 2.0 (OS/2)

WKU, WK1, WK3, WK4, WK5,
WK6

Lotus Symphony 1.0, 1.1 and 2.0 WR1

Macintosh standard raster --- PICT1, PICT2

MacPaint --- MAC

MacPict --- PCT

Manuscript through 2.0 DOC

MASS11 through 8.0 AA4, AA5, AA6, AA7, AA8

Micrografx Designer 3.1 (Windows)
6.0 (Windows 95)

DRW, DSF

Microsoft Windows Write through 3.0 WRI

Microsoft Word through 6.0 (DOS)
97 (Windows)

DOC

Microsoft WordPad all DOC

Microsoft Works through 2.0 (DOS)
through 4.0 (Windows)

WPS, WKS, WDB, WCM

Microsoft Excel 2.2 through 7.0
(Windows)
97 (Windows 95)

XLA, XLC, XLM, XLS, XLT,
XLW

Microsoft PowerPoint through 7.0 (Windows)
97 (Windows 95)

PPT

Microsoft Rich Text Format through 2.0 RTF

Mosaic Twin 2.5 WKU

MultiMate through 4.0 DOC, DOX, FNT, FNX

Navy DIF all DIF

Nota Bene 3.0 NB

Office Writer 4.0 through 6.0 OW4

Paradox through 4.0 (DOS),
through 1.0 (Windows)

DB, DB3

PC-File Letter through 5.0 (File+
Letter, through 3.0)

LTR

PC Paintbrush --- PCX

PFS:Professional Plan 1.0 TID

PFS:Write A, B, and C PFB

PIC (Lotus) --- PIC

Portable Network Graphics Internet
Format

1.0 (non-LZW
Compression)

PNG

C Programmer’s Reference

5–62

File Type Versions Valid Extension(s)

Professional Write through 2.1;
1.0 (Plus)

PW1, PWP

Professional Write 2 --- 22

Q&A 2.0 (DOS)
3.0 (Windows)
through 2.0
(database)

QA, QW, DTF

QuattroPro through 5.0 (DOS)
through 7.0 (Windows)

WQ1, WB1, WB2

R:BASE through 3.1;
1.0 (System V)

RBF

Reflex 2.0 R2D

Samna Word through IV+ SAM

SmartWare II 1.02 DOC, DB, WS

Sprint through 1.0 SPR

Standard Generalized Markup
Language

--- SGML

Sun Raster File Format --- SRS

SuperCalc 5 4.0 CAL

TAR tar

text files ASCII, ANSI TXT

TGA (TARGA) --- TGA

TIFF Format through 6.0 TIF, TIFF

TIFF CCITT Group 3 & 4 --- TIF, TIFF

Total Word 1.2 TW

Viseo ---- VSD

Volkswriter 3 & 4 through 1.0 VW4

VP Planner 3D 1.0 WKS

Wang PC (IWP) through 2.6 IWP

Windows Metafile --- WMF

WordMARC throthrough Composer
Plus

WWMC

WWordPerfect tthrough 7.0 WWPD, WPG, WPF, WP5

WWordStar tthrough 7.0 (DOS);

through 3.0 (WordStar
2000 for DOS);
1.0 (Windows)

WWS, WSD, WS2, WS4, WS6

XX-Windows Bitmap --- XXBM

XX-Windows Pixmap --- XXPM

C Programmer’s Reference

5–63

File Type Versions Valid Extension(s)

XX-Windows Dump --- XXWD

ZZIP file PPKWARE through
2.04g

ZZIP

Return Values
• AVS_OK

• AVS_CVT_ERR

• AVS_DICTIONARY_ERR

See also
• avs_convert_file2html

• avs_convert_init

C Programmer’s Reference

5–64

avs_convert_init
Initializes the document converters.

C Synopsis

AVSAPI (int) avs_convert_init (
 IN avs_convert_params_t *p_params /* converter parameters */

Arguments
*p_params Converter parameters.

Description
The avs_convert_init procedure initializes the document converters. See avs_convert_params for more
information.

Return Values
AVS_OK

See also
• avs_convert_file2html

• avs_convert_file2text

C Programmer’s Reference

5–65

avs_count
Enumerates all the words beginning with a specified prefix in the index and, for each, how many times it occurs.

C Synopsis

 AVSAPI(int) avs_count (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN const char* pWordprefix, /* first word to find (>=) (may be NULLSTRING) */
 OUT avs_countsHdl_t *pCountsHdl /* ptr to counts handle
 (used with avs_countNext) */
);

Arguments
idx The index handle.

pWordprefix Pointer to a word or portion of a word. All words that begin with this character string are
returned, one at a time, through the avs_countnext procedure.

pCountsHdl Pointer to the counts handle.

Description
The avs_count procedure is used in conjunction with avs_countnext to enumerate index entries that match the
specified word or prefix.

The count is not adjusted for deletions if they have occurred since the last time the index has been compacted.

To enumerate the entire contents of the index, use a null value for the pWordprefix argument. This procedure will
return a count for all index entries including those that have been deleted.

Word counting is able to be used with wildcards. You could previously enumerate the index entries by counting
the occurrences of abc in an index and the occurrences abc would be returned. Now you can enumerate the
occurrences of abc*d in the index, and the number of occurrences of all the words that start with abc, followed
by some character, and ending with d would be returned. The wildcard characters ?, *, and ** can be used to
represent 1, 0 to 5, and 0 to unlimited characters, respectively.

Return Values
AVS_OK or an error code.

See also
• avs_countnext

C Programmer’s Reference

5–66

avs_count_close
Ends a count request and frees allocated resources.

C Synopsis

AVSAPI(int) avs_count_close (
 IN avs_countsHdl_t countsHdl /* counts handle */
);

Arguments
countsHdl The counts handle.

Description
The avs_count_close procedure closes a count request. After all calls to avs_countnext are complete, call
avs_count_close to release the resources allocated for the count.

Return Values
AVS_OK or an error code.

See also
• avs_count

• avs_countnext

C Programmer’s Reference

5–67

avs_count_getcount
Retrieves the number of word occurrences corresponding to the most recent call to avs_countnext.

C Synopsis

AVSAPI(unsigned long) avs_count_getcount (
 IN avs_countsHdl_t countsHdl /* counts result handle */
);

Arguments
countsHdl The counts handle.

Description
The avs_count_getcount procedure retrieves the number of word occurrences corresponding to the most recent
call to avs_countnext.

Return Values
The number of occurrences in the index of a word matching the specified word or prefix.

See also
• avs_count

• avs_count_getword

• avs_countnext

C Programmer’s Reference

5–68

avs_countnext
Retrieves the first or next index entry matching the word or prefix specified in the avs_count procedure.

C Synopsis

AVSAPI(int) avs_countnext (
 IN avs_countsHdl_t countsHdl /* counts handle (from avs_count) */
);

Arguments
countsHdl The counts handle from avs_count.

Description
The avs_countnext procedure retrieves the next (or first) index entry that matches the prefix specified in
avs_count. The procedures avs_count_getword and avs_count_getcount return the actual word and the number
of times it occurs in the index, respectively. The procedure returns AVS_NOMORE_WORDS when there are no
more matching words.

Return Values
AVS_OK or AVS_NOMORE_WORDS.

See also
• avs_count

• avs_count_getcount

• avs_count_getword

C Programmer’s Reference

5–69

avs_count_getword
Retrieves the word corresponding to the most recent call to avs_countnext.

C Synopsis

AVSAPI(char *) avs_count_getword (
 IN avs_countsHdl_t countsHdl /* counts result handle */
);

Arguments
countsHdl The counts result handle.

Description
The avs_count_getword procedure retrieves a pointer to the word corresponding to the most recent call to
avs_countnext.

Return Values
Pointer to the word corresponding to the most recent call to avs_countnext procedure. This pointer is only valid
until the next call to avs_countnext.

See also
• avs_count

• avs_count_getcount

• avs_countnext

C Programmer’s Reference

5–70

avs_cvterrmsg
Returns the pointer to the error message text corresponding to a document converter error code.

C Synopsis

 AVSAPI(char *)avs_cvterrmsg(int code); /* copies error message text as
in comments above */

Arguments
char The pointer to the error message text.

Description
The avs_cvterrmsg procedure returns the pointer to the error message text corresponding to a document
converter error code. It is used to translate any non-zero status codes returned by any of the conversion
procedures to a printable string (English).

Return Values
Pointer to the error message text corresponding to a document converter error code.

See also
• avs_cvterrmsg_copy

C Programmer’s Reference

5–71

avs_cvterrmsg_copy
Copies the error message text to a buffer.

C Synopsis

 AVSAPI(void)avs_cvterrmsg_copy(int e, char * buf, int bufsiz);

Arguments
buf Buffer for the error message text.

Description
The avs_cvterrmsg_copy procedure copies the error message text to a buffer.

Return Values
None.

See also
• avs_cvterrmsg

C Programmer’s Reference

5–72

avs_default_options
Initializes search options to default values.

C Synopsis

AVSAPI(void) avs_default_options (
 OUT avs_options_p_t pOptions /* PTR to avs_options_t structure to be
initialized */

Arguments
pOptions Pointer to the avs_options_t structure to be initialized.

Description
The avs_default_options procedure initializes search or query options to the default values. The default values
for search options are:

• The maximum number of documents returned from a search is 32,000.

• The additional query option of AVS_OPT_FLAGS_RANK_TO_BOOL.

• ISO Latin 1 is the default character set.

Return Values
AVS_OK or an error code

See also
• avs_search

C Programmer’s Reference

5–73

avs_define_valtype
Defines a new value type for adding searchable values, and ranking values.

C Synopsis

 AVSAPI(int) avs_define_valtype (
 IN const char * name, /* up to 10 characters
 IN unsigned long minval, /* minimum value - zero recommended
 IN unsigned long maxval,
 IN unsigned long (*makeval) (char *),
 OUT avs_valtype_t * valtype_p
);

Arguments
name String that contains the name of the value type (By default, the maximum name length is 10

characters).

minval Long with the minimum value of the value type, set to zero (0) when defining ranking types.

maxval Long with the maximum value of the value type.

makeval Procedure to convert string to value.

* valtype_p Returned pointer to the new value type.

Description
The avs_define_valtype procedure lets you define your own value type, for example, the value type lines (to
count the number of lines per document). A searchable value or a ranking value of this type can be added to a
document. With the type name, you also must supply the lowest to the highest possible values. In your filter
application, use a call to avs_setrankval procedure to set a rank value for each document in the index. Use a call
to the avs_addvalue procedure to set a searchable numeric value.

If you expect a user's search terms to be something other than an integer, for example, a part number that may
contain alpha-numeric characters, you must supply a makeval function that can convert the search string into an
integer value.

The avs_define_valtype procedure is an application-wide procedure and, therefore, effects all the indexes that
are open. You must call avs_define_valtype in your main thread before you open the index. Call the
avs_release_valtypes procedure after the last call to avs_close to release the values.

Return Values
AVS_OK or an error code

See also
avs_addvalue avs_define_valtype_multiple

avs_lookup_valtype avs_release_valtypes

avs_search_genrank avs_setrankval

C Programmer’s Reference

5–74

avs_define_valtype_multiple
Defines a value type to be used for filtering on multiple non-zero values.

C Synopsis

 AVSAPI(int) avs_define_valtype_multiple (
 IN const char * name, /* up to 10 characters
 IN unsigned long minval, /* minimum value - must be zero
 IN unsigned long maxval, /* maximum value
 IN int numvalues, /* maximum no. of multiple filtering values
 IN unsigned long (*makeval) (char *), /* function to convert buffer to
numeric value
 OUT avs_valtype_t * valtype_p
);

Arguments
name String that contains the name of the value type (the maximum name length is 10 characters).

minval Long with the minimum value of the value type set to zero (0).

maxval Long with the maximum value of the value type.

numvalues Maximum number of multiple filtering values.

*makeval A function to convert the buffer to a numeric value.

* valtype_p Returned pointer to the new value type.

Description
The avs_define_valtype_multiple procedure lets you define your own value type to add a set of values to a
document. Subsequently, these values can be used to filter search results. With the type name, you also must
supply the minimum to maximum range possible for values. The numvalues parameter determines the maximum
number of multiple ranking values allowed for this valtype for each document.

In your filter application, use a call to avs_setrankval procedure to set each value for the document.

If you expect a user's search terms to be something other than an integer, for example, a part number that may
contain alpha-numeric characters, you must supply a makeval function that can convert the search string into an
integer value. Multiple value filters are designed to work with non-zero values only.

The avs_define_valtype_multiple procedure is an application-wide procedure and, therefore, effects all the
indexes that are open. You must call avs_define_valtype_multiple in your main thread before you open the
index. Call the avs_release_valtypes procedure after the last call to avs_close to release the values.

Return Values
AVS_OK or an error code

See also
• avs_define_valtype-

• avs_lookup_valtype

C Programmer’s Reference

5–75

• avs_release_valtypes

• avs_search_genrank

• avs_setrankval

C Programmer’s Reference

5–76

avs_deletedocid
Marks the specified document for deletion.

C Synopsis

AVSAPI(int) avs_deletedocid (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN const char* pDocid, /* Document Id */
 OUT int* pCount /* number of documents found/deleted */
);

Arguments
idx The index handle.

pDocid String that identifies the document (limited to 120 bytes and case sensitive).

pCount The location to which the number of documents found and marked for deletion is returned.

Description
The avs_deletedocid procedure marks for deletion all documents with a specified docid (if any exist). If there are
any documents with the specified docid in the pending document set (those documents added since the last call
to avs_makestable), an error (AVS_DOC_EXISTS) is returned and no documents are deleted. The number of
documents that are found is returned in the pCount argument.

For the documents to actually be deleted, you must call the avs_makestable procedure. If you insert the call to
avs_makestable immediately after the avs_deletedocid procedure, the deletion will be effective immediately.

The document ID string comparison is case-sensitive.

Return Values
AVS_OK or an error code

See also
• avs_search

• avs_search_genrank

C Programmer’s Reference

5–77

avs_enddoc
Terminates the sequence of calls for adding a document to the index begun by the avs_startdoc procedure.

C Synopsis

AVSAPI(int) avs_enddoc (
 IN avs_idxHdl_t idx
);

Arguments
idx The index handle.

Description
The avs_enddoc procedure terminates a sequence of calls for adding a document to the index by the
avs_startdoc procedure.

The avs_startdoc/avs_enddoc calls are an alternative to the use of avs_newdoc and are used with applications
like Java and Visual Basic. Call avs_startdoc with the same arguments as the avs_newdoc procedure with the
exception of the filter function and its argument. The first location available in the index for the new document is
returned through the pStartLoc argument. Use this in the first call to the avs_addword procedure or similar kinds
on procedures. When you are finished adding document contents, call the avs_enddoc procedure to terminate the
document.

After a call to the avs_startdoc procedure and before a call to the avs_enddoc procedure, you can use exactly
those calls which your filter procedure would have used, for example, avs_addword or avs_addliteral.

Return Values
AVS_OK or an error code.

See also
• avs_newdoc

• avs_startdoc

C Programmer’s Reference

5–78

avs_errmsg
Returns a pointer to error message text associated with an error code.

C Synopsis

AVSAPI(char *)avs_errmsg(int code);

Arguments
char Error message text.

Description
The avs_errmsg procedure returns a text string associated with an error code. It is used to translate any non-zero
status codes returned by any of the Index procedures to a printable string (English).

Return Values
Error message text.

See also
• avs_errmsg_copy

C Programmer’s Reference

5–79

avs_errmsg_copy
Copies the error message string to a buffer.

C Synopsis

AVSAPI(void)avs_errmsg_copy(int e, char * buf, int bufsiz);

Arguments
buf Buffer for the error message text.

Description
The avs_errmsg_copy procedure copies the error message text to a buffer.

Return Values
None.

See also
• avs_errmsg

C Programmer’s Reference

5–80

avs_getindexmode
Returns whether the current index is in build or query mode.

C Synopsis

AVSAPI(int) avs_getindexmode (
 IN avs_idxHdl_t pHdl /* ptr to index handle */
);

Arguments
pHdl Pointer to the index handle.

Description
Returns 0 if the index is in query mode, or 1 if the index is in build mode.

Return Values

Value Returned Description

0 The index is in query mode.

1 The index is in build mode.

See also
• avs_compact

• avs_getindexversion

• avs_makestable

C Programmer’s Reference

5–81

avs_getindexversion
Returns the current stable version number of the index.

C Synopsis

AVSAPI(int) avs_getindexversion (
 IN avs_idxHdl_t idx /* Index handle (from avs_open) */
);

Arguments
idx String specifying the index handle.

Description
Returns the current stable version of the index. The index version number reflects increments resulting from the
avs_makestable or avs_compact procedures.

Return Values
Returns the version number of the index.

See also
• avs_compact

• avs_getindexmode

• avs_makestable

C Programmer’s Reference

5–82

avs_getindexversion_counts_v
Returns the current stable version number of the index from the given counts context.

C Synopsis

AVSAPI(int) avs_getindexversion_counts_v (
 IN avs_countsHdl_t countsHdl /* counts handle */
);

Arguments
idx String specifying the counts handle.

Description
The avs_getindexversion_counts_v procedure returns the current stable version of the index from the given
counts context. The index version number reflects increments resulting from the avs_makestable or avs_compact
procedures.

Return Values
AVS_OK or an error code.

See also
• avs_compact

• avs_getindexmode

• avs_getindexversion

• avs_getindexversion_search_v

• avs_makestable

C Programmer’s Reference

5–83

avs_getindexversion_search_v
Returns the current stable version number of the index from the given search context.

C Synopsis

AVSAPI(int) avs_getindexversion_search_v (
 IN avs_searchHdl_t searchHdl /* search result handle */
);

Arguments

idx String specifying the index handle.

Description
The avs_getindexversion_search_v procedure returns the current stable version of the index from the given
search context. The index version number reflects increments resulting from the avs_makestable or avs_compact
procedures.

Return Values
AVS_OK or an error code.

See also
• avs_compact

• avs_getindexmode

• avs_getindexversion

• avs_makestable

C Programmer’s Reference

5–84

avs_getsearchresults
Retrieves results of a search.

C Synopsis

AVSAPI(int) avs_getsearchresults (
 IN avs_searchHdl_t searchHdl, /* search handle (from avs_search */
 IN int resultNum /* which document from results list */
);

Arguments
searchHdl The search handle (from avs_search).

resultNum Specifies the document to get from the results list.

Description
The avs_getsearchresults procedure is used to retrieve specific search results after calling the avs_search
procedure and place the results in the search handle. An ordinal value specifies which result to retrieve. This
ordinal must be a value between 0 and the number of documents returned by avs_search (in the pDocsReturned
argument), minus 1. This procedure retrieves various document attributes, such as, relevancy value, document
date, document Id, and document data and makes the value of the attributes available through the search results
handle.

Return Values
AVS_OK or an error code.

See also
• avs_getsearchterms

• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

• avs_search_getrelevance

C Programmer’s Reference

5–85

avs_getsearchterms
Retrieves one ranking term and statistics for a search.

C Synopsis

AVSAPI(int) avs_getsearchterms (
 IN avs_searchHdl_t pSearchHdl,/* search handle */
 IN int termNum,/* which term from results list */
 OUT char **term,/* term (storage released by avs_search_close) */
 OUT long *count /* # occurrences...-1 means too many, ignored */
);

Arguments
psearchHdl The search handle (from avs_search).

termNum Specifies which term to retrieve from the results list.

**term Receives pointer to term string.

*count Receives the number of occurrences of a term.

Description
The avs_getsearchterms procedure is used to retrieve a term and term statistics for the specified search. The
term to retrieve is the 0-relative result number specified in the second argument.

Return Values
AVS_OK or an error code.

See also
• avs_getsearchresults

• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

• avs_search_getrelevance

C Programmer’s Reference

5–86

avs_getsearchversion
Retrieves a version string which defines the version of the index used for this search.

C Synopsis

 AVSAPI(int) avs_getsearchversion (
 IN avs_searchHdl_t pSearchHdl, /* search handle */
 OUT char * searchversion
);

Arguments
searchHdl The search handle (from avs_search).

searchversion Specifies the version of the index for which you have a search result.

Description
The avs_getsearchversion procedure retrieves a version string which defines the version of the index used for
this search. This string can be passed to the avs_search_ex or avs_search_genrank procedures to limit results to
documents added since that version.

The version string will not be more than the maximum length defined by AVS_SEARCHVERSION_MAXLEN .
The default is 30 bytes long, including the terminating null byte.

Return Values
AVS_OK or an error code.

See also
• avs_getsearchterms

• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

• avs_search_getrelevance

C Programmer’s Reference

5–87

avs_lookup_valtype
Looks up a value type by name.

C Synopsis

AVSAPI(avs_valtype_t) avs_lookup_valtype (
 IN char * name
);

Arguments
name The pointer to the string that contains the name of the value type.

Description
The avs_lookup_valtype procedure is used to lookup value types defined by the avs_define_valtype procedure.
It returns a NULL or a pointer to the type.

Return Values
NULL or a pointer to the type.

See also
• avs_define_valtype

• avs_release_valtypes

• avs_search_genrank

C Programmer’s Reference

5–88

avs_makestable
Commits any pending index updates to disk.

C Synopsis

AVSAPI(int) avs_makestable (
 IN avs_idxHdl_t idx /* Index handle (from avs_open) */
);

Arguments
idx The index handle.

Description
The avs_makestable procedure saves recent deletions or additions made to the index file. The documents and
words added to the index are flushed to the disk, and all documents marked for deletion by a previous call to
avs_deletedocid, are deleted. This procedure should be called before closing the index and after every 500,000 or
so words have been indexed.(This number depends on available memory - larger systems can wait longer
between makestable procedures.)

This procedure finishes the job of adding and deleting documents and makes the newly added documents
"searchable" while removing the documents marked for deletion by the avs_deletedocid procedure.

The application should also compact the index after a series of updates is completed, to improve subsequent
query performance or to recover space from deleted entries. Your application should test if compaction is needed
(avs_compactionneeded) after each avs_makestable call and perform a avs_compact_minor loop if the answer
is yes. If you defer compaction too long, the makestable procedure will take longer and longer to complete.

Return Values
AVS_OK or an error code.

See also
• avs_close

• avs_compact

• avs_deletedocid

• avs_newdoc

• avs_open

C Programmer’s Reference

5–89

avs_newdoc
Creates a new document or replaces an existing document in the index.

C Synopsis

AVSAPI(int) avs_newdoc (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN void * pFilterdata, /* info identifying the document -passed to filter
*/
 IN filter_p_t pFilter, /* ptr to filter function */
 IN const char *pDocId, /* document identifier string */
 IN int flags, /* conditions: docid must NOT already exist (1),
 docid MUST already exist (2),
 duplicate docid's allowed (4)*/
 OUT unsigned long *pNumWords /* total words in document */
);

Arguments
idx The index handle.

pFilterdata Pointer to arbitrary data need by the filter procedure, such as the file path or the
database key. This pointer is passed to the filter procedure.

filter_p_t pFilter A pointer to the filter procedure that prepares the document for indexing.

pDocId String that names the document (limited to 120 bytes and case sensitive).

flags Sets the conditions for creating a new document. The conditions can have the
following flags:

0 Does not matter whether the document already exists. If it does not exist,
create it. If it does exist, replace it.

1 The docid must not already exist.

2 The docid must already exist.

4 Duplicate document IDs are allowed. If a document with the same ID
already exists, another one can also be created.

pNumWords The total number of words in the document

Description
The avs_newdoc procedure creates a new document in a specified index. A filter procedure (callback function)
must be defined which is responsible for adding words to the index (see Creating a Filter Procedure and
avs_addword for more information).

The filter callback is called with the following arguments:

IN avs_idxHdl_t idx (index handle)
 IN void * pFilterdata, (info identifying the document)
 IN unsigned long startloc, (starting location for adding words or
literals)
 OUT unsigned long *pNumWords (the number of words added to the index)

C Programmer’s Reference

5–90

The function should return the number of words added to the index in the last argument. The filter function
should also return AVS_OK to signal success, or AVS_FILTER_ERR to signal an error. A filter error will cause
avs_newdoc to return AVS_FILTER_ERR.

An Alternative to the avs_newdoc Procedure
Call avs_startdoc with the same arguments as the avs_newdoc procedure with the exception of the filter
function and its argument. The first location available in the index for the new document is returned through the
pStartLoc argument. Use this in the first call to the avs_addword procedure or similar kinds on procedures.
When you are finished adding document contents, call the avs_enddoc procedure to terminate the document.

After a call to the avs_startdoc procedure and before a call to the avs_enddoc procedure, you can use exactly
those calls which your filter procedure would have used (for example, avs_addword or avs_addliteral).

Use of Flags

When you use the flags to cause automatic deletion of previous docid instances, it makes the normal, periodic
document update easy. However, it does not protect against other instances of the same doc-id within the pending
document set in memory, only against those documents recorded onto disk at some previous pass. If there are any
documents with the specified docid in the pending document set (those documents added since the last call to
avs_makestable), an error (AVS_DOC_EXISTS) is returned and no documents are deleted.

Return Values
AVS_OK, AVS_FILTER_ERR or an error code.

See also
• avs_close

• avs_makestable

• avs_open

C Programmer’s Reference

5–91

avs_open
Opens an index for querying or for modifying.

C Synopsis

AVSAPI(int) avs_open (
 IN const avs_parameters_t * parameters,
 IN const char * path, /* path name to index location on disk */
 IN const char * mode, /* mode "r" for read-only, "rw" for modify,
"ro" for cdrom */
 OUT avs_idxHdl_t * pIdx /* new index handle */
);

Arguments
parameters Pointer to the avs_parameter block.

path String that is the full or relative path of the index directory on disk.

mode String that specifies whether the index should be opened as a read only (r) or a
read write (rw) index.

pIdx The location to receive the handle of the opened index. This handle is used in
subsequent index functions.

Description
The avs_open procedure opens the index pointed to by the path argument. The mode parameter can be either "r"
for read only, "rw" for read-write, and "ro" for CD-ROM. When "rw" is set, the index is opened for reading and
writing. Appropriate locks are set to interlock reads and updates in other processes.

Note: The directory specified by path must exist. If the directory specified by path is empty, a new index will be
created.

Return Values
AVS_OK or an error code.

See also
• avs_close

• avs_makestable

• avs_newdoc

C Programmer’s Reference

5–92

avs_querymode
Optimizes an index for optimum query performance.

C Synopsis

AVSAPI(int) avs_querymode (
 IN avs_idxHdl_t idx /* Index handle (from avs_open) */
);

Arguments
idx The index handle.

Description
The avs_querymode procedure optimizes an index for response to search calls. This allows optimal response in
querying the index when use of the query interface is high. The new mode takes effect immediately. This state is
not retained at the next call to avs_open unless either the avs_makestable or avs_compact procedure is called.

This procedure may cause a full compaction of the index.

Return Values
AVS_OK or an error code.

See also
• avs_buildmode

• avs_makestable

• avs_newdoc

C Programmer’s Reference

5–93

avs_release_valtypes
Releases all value type definitions.

C Synopsis

AVSAPI(void) avs_release_valtypes(void);

Description
The avs_release_valtypes procedure releases any value types that have been defined. This procedure should only
be called after your application's last call to avs_close.

Return Values
AVS_OK or an error code.

See also
• avs_define_valtype

• avs_lookup_valtype

C Programmer’s Reference

5–94

avs_search
Searches for documents that match a query expression and the given search parameters.

C Synopsis
AVSAPI(int) avs_search (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN const char * pQuery, /* simple query expression */
 IN const char * pBoolQuery, /* boolean query expression */
 IN avs_options_p_t pOptions, /* query options */
 OUT long *pDocsFound, /* no. of documents found */
 OUT long *pDocsReturned, /* no. of documents returned */
 OUT long *pTermCount, /* no. of terms in rank string */
 OUT avs_searchHdl_t *pSearchHdl /* search handle (used with
avs_getsearchresult) */
);

Arguments
idx The index handle.

pQuery Pointer to a simple (or ranking) query expression. May be NULL.

pBoolQuery Pointer to a boolean query expression.May be NULL.

pOptions The query options.

pDocsFound Pointer to the number of documents found.

pDocsReturned Pointer to the number of documents returned. This is the same as the pDocsFound
argument unless an argument of the avs_default_options structure limits the number of
documents returned, or if ranking terms are present.

pTermCount The pointer to the number of terms in the ranking string.

pSearchHdl The search handle to use with avs_getsearchresults.

Description
The avs_search performs a search for documents in an index. A simple query expression can contain words,
phrases, the asterisk (*) wildcard character, and the + and - operators, which require or prohibit the presence of a
word in the search results. A Boolean search expression uses the logic operators AND, OR, NOT, NEAR, or
WITHIN.

This procedure searches the index and reports the following results:

• the number of documents found

• the number of documents actually returned for inspection (subject to the supplied limit)

• a handle for the returned documents

It is possible to use this interface to perform consistently with either the AltaVista simple search or the AltaVista
advanced search function (as seen at http://altavista.digital.com). You can also effectively combine both
approaches in one call.

C Programmer’s Reference

5–95

To Perform a Simple Search
Use the pQuery argument to point to the simple query string. Do not use the pBoolean argument. Set
AVS_OPT_FLAGS_RANK_TO_BOOL flag to 1.

To Perform an Advanced Search
Use the pQuery argument to point to ranking terms. Use the pBoolean argument to point to the advanced query
string. Set AVS_OPT_FLAGS_RANK_TO_BOOL flag to 0.

The Combined Approach -- Simple Query with Boolean Qualifiers
Use the pQuery argument to point to the simple query string and use the pBoolean argument to point to the
advanced query string. Set AVS_OPT_FLAGS_RANK_TO_BOOL flag to 1. In this case, the behavior is that of
the simple query, filtered by the boolean expression, that is, the results are the intersection of what would be
produced by the simple query and the boolean query separately.

For more information, see Searching the Index. In all cases, the results are ranked according to the relative
weighted occurrence of the (non-negative) terms in the simple query (or ranking) string. If there are no such
terms, the result is unranked.

Additional Query Option
The avs_search procedure has an option which lets you control ranking weight of search terms:

AVS_OPT_FLAGS_NO_POS_BOOST - If you set this flag to 1, the extra weight that a search term occurring
early on in the document receives is suppressed. Normally, if a search term occurs in the first eight words of a
document (for example, the title), it receives extra weight in the ranking process. If the search term occurs in the
first 32 words of a document, it also receives extra weight but not as much as if it occurred in the first 8.

Return Values
AVS_OK or an error code.

See also
• avs_default_options

• avs_getsearchresults

• avs_getsearchterms

• avs_search_ex

C Programmer’s Reference

5–96

avs_search_close
Closes a search request.

C Synopsis

AVSAPI(int) avs_search_close (
 IN avs_searchHdl_t SearchHdl /* the search handle */
);

Arguments

searchHdl The search handle.

Description
The avs_search_close procedure closes a search. This must be called when all calls to avs_getsearchresults are
completed, to release the resources allocated for a search.

Return Values
AVS_OK or an error code.

See also
• avs_makestable

• avs_newdoc

• avs_open

C Programmer’s Reference

5–97

avs_search_ex
Searches for documents that match a query expression and the given search parameters with the searchsince
option.

C Synopsis
AVSAPI(int) avs_search_ex (
 IN avs_idxHdl_t idx, /* Index handle */
 IN const char * pQuery, /* simple query expression */
 IN const char * pBoolQuery, /* boolean query expression */
 IN const avs_options_p_t pOptions, /* options */
 IN const char * searchsince, /* NULL, or version string */
 OUT long *pDocsFound, /* no. of documents found */
 OUT long *pDocsReturned, /* no. of documents returned */
 OUT long *pTermCount, /* no. of terms used in ranking */
 OUT avs_searchHdl_t *pSearchHdl /* search handle (used with
avs_getsearchresult)*/);

Arguments
idx The index handle.

pBoolQuery Pointer to a boolean query expression.

pOptions The query options.

searchsince Version string or NULL.

pDocsFound Pointer to the number of documents found.

pDocsReturned Pointer to the number of documents returned. This is the same as the pDocsFound
argument unless an argument of the avs_default_options structure limits the number of
documents returned.

pTermCount Pointer to the number of terms used in ranking.

pSearchHdl The search handle to use with avs_getsearchresults.

Description
The avs_search_ex lets you specify a searchsince argument that returns results from documents that have been
added since the last search.

For more information, see Searching the Index.

Return Values
AVS_OK or an error code.

See also
• avs_default_options

• avs_getsearchresults

• avs_getsearchterms

• avs_search

C Programmer’s Reference

5–98

avs_search_genrank
Searches for documents that match a query expression and ranks the results according to the ranking expression.

C Synopsis

 AVSAPI(int) avs_search_genrank (
 IN avs_idxHdl_t idx, /* Index handle */
 IN const char * pBoolQuery, /* boolean query expression */
 IN const char * pRankTerms, /* generic ranking expression */
 IN avs_ranksetup_t * pRankSetup, /* NULL, or special ranking setup */
 IN const avs_options_p_t pOptions, /* options */
 IN const char * searchsince, /* NULL, or version string */
 OUT long *pDocsFound, /* no. of documents found */
 OUT long *pDocsReturned, /* no. of documents returned */
 OUT avs_searchHdl_t *pSearchHdl /* search handle (used with
avs_getsearchresult) */
);

Arguments
idx The index handle.

pBoolQuery The Boolean query expression.

pRankTerms The generic ranking expression.

pRankSetup NULL or the special ranking expression.

pOptions The options specified in the avs_parameter structure.

searchsince NULL or version string.

pDocsFound Pointer to the number of documents found.

pDocsReturned Pointer to the number of documents returned.

avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more
information.

Description
The avs_search_genrank procedure retrieves information about a search result and stores it in a buffer. To
perform the Boolean query, use the [X-Y] form for the search terms. If you supply a ranking term that does not
exist in the index, or supply no ranking term, no results are returned. This behavior is different from that of
avs_search in that the ranking term, if it is supplied, may or may not exist in the index.

The ranking expression can consist of an application-defined ranking term, or one of the pre-defined ranking
terms.

The pre-defined ranking terms are:

• #date -- ranks documents according to date

• #time -- ranks documents according to date and time

If the term is preceded by a minus sign (-), the rank order is reversed. For example,

• #date produces most-recent dates first

C Programmer’s Reference

5–99

• -#date produces oldest dates first

Granularity of ranking

• When ranking documents by #date, the granularity is a day on all platforms.

• When ranking documents by #time, the granularity is a minute on Windows NT, Solaris, Linux (Intel).

• When ranking documents by #time, the granularity is a second on Compaq Tru64 UNIX (DIGITAL
UNIX).

The application-defined ranking term must be added to the index with avs_setrankval. You can also reverse the
sort order of search results by preceding this ranking term with a minus sign. The pRankSetup argument should
always be NULL.

If you have multiple-valued rank values, the only valid use for the multiple-valued rank values is for filtering.

Return Values
Number of documents found, the number of documents returned.

See also
• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

• avs_search_getdocid_copy

• avs_search_getrelevance

C Programmer’s Reference

5–100

avs_search_getdata
Returns the data associated with a search result.

C Synopsis

AVSAPI(void *) avs_search_getdata (
 IN avs_searchHdl_t searchHdl /* search result handle */
);

Arguments
avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more

information.

Description
The avs_search_getdata procedure retrieves information about a search result. Often the document data consists
of the title or the first several lines of the document. It must be preceded by a call to avs_getsearchresults and a
call to avs_search_getdatalen to determine the size of the buffer to allocate for the document data.

If your index has documents that have multiple dates associated with it, and the dates have been added by a
combination of avs_setdocdate, avs_setdocdatetime, and avs_adddate, search and ranking behavior is described
below: Search by date: Any date associated with a document that falls within the range specified in a search will
result in that document being returned.

Rank by date: Ranking documents by date will only reflect the date added by avs_setdocdate or
avs_setdocdatetime.

Return Values
A pointer to the document data.

See also
• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

• avs_search_getrelevance

C Programmer’s Reference

5–101

avs_search_getdata_copy
Returns the data associated with a search result and stores it in a buffer.

C Synopsis
 AVSAPI(void) avs_search_getdata_copy (
 IN avs_searchHdl_t searchHdl, /* search result handle */
 IN void * databuf,
 IN int buflen
);

Arguments
avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more

information.

databuf The buffer which contains requested of the search result.

buflen The buffer length of databuf.

Description
The avs_search_getdata_copy procedure retrieves at most buflen bytes of information about a search result and
stores it in databuf. Applications like Java or VisualBasic can retrieve the information in a usable format. Often
the document data consists of the title or the first several lines of the document. It must be preceded by a call to
avs_getsearchresults.

Return Values
None.

See also
• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

• avs_search_getdocid_copy

• avs_search_getrelevance

C Programmer’s Reference

5–102

avs_search_getdatalen
Returns the length of the data associated with a search result.

C Synopsis
 AVSAPI(int) avs_search_getdatalen (
 IN avs_searchHdl_t searchHdl /* search result handle */
);

Arguments
avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more

information.

Description
The avs_search_getdatalen procedure retrieves the length of the document data associated with a search result.
Often the data consists of the title or the first several lines of the document.

Return Values
The length in bytes of the document data.

See also
• avs_search_getdata

• avs_search_getdate

• avs_search_getdocid

• avs_search_getrelevance

• avs_setdocdate

C Programmer’s Reference

5–103

avs_search_getdate
Returns the date associated with a search result.

C Synopsis
 AVSAPI(void) avs_search_getdate (
 IN avs_searchHdl_t searchHdl, /* search result handle */
 OUT int *dateY, /* Year 0100 <> 2148*/
 OUT int *dateM, /* Month (1-12) */
 OUT int *dateD /* Day (1-31) */
);

Arguments
avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more

information.

dateY The year greater than 01/01/0100 but less than 12/31/2148 inclusive.

dateM The month of the year (1-12).

dateD The day of the month (1-31).

Description
The avs_search_getdate procedure retrieves the date the document was indexed as set by avs_setdocdate. The
avs_search_getdate procedure must be preceded by a call to avs_getsearchresults.

Return Values
The date of the document. (See avs_setdocdate for date format.)

See also
• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdocid

• avs_search_getrelevance

• avs_setdocdate

C Programmer’s Reference

5–104

avs_search_getdocid
Returns the unique identifier associated with a search result.

C Synopsis
 AVSAPI(unsigned char *) avs_search_getdocid (
 IN avs_searchHdl_t searchHdl /* search result handle */
);

Arguments
avs_searchHdl_t searchHdl The handle of the search result for which you are requesting the

document ID.

Description
The avs_search_getdocid procedure retrieves the identifier of the search result document.

Return Values
A pointer to the document identifier string. Valid until the next call to avs_getsearchresult or avs_search_close.

See also
• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getrelevance

C Programmer’s Reference

5–105

avs_search_getdocid_copy
Returns the unique document identifier associated with a search result to the caller's buffer.

C Synopsis
 AVSAPI(void) avs_search_getdocid_copy (
 IN avs_searchHdl_t searchHdl, /* search result handle */
 IN unsigned char * databuf, /* caller's buffer */
 IN int buflen /* length of caller's buffer */
);

Arguments
avs_searchHdl_t searchHdl The handle of the search result for which you are requesting the document

identifier.

databuf The buffer which contains the value of search result handle.

buflen The buffer length of databuf.

Description
The avs_search_getdocid_copy procedure stores the document identifier of the search result in a buffer. Because
applications like Java and Visual Basic cannot use the format (char *) of the return in the avs_search_getdocid
procedure, avs_search_getdocid_copy stores the document identifier of the search result in a buffer to be called
by these types of applications.

Return Values
None

See also
• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

• avs_search_getdocidlen

• avs_search_getrelevance

C Programmer’s Reference

5–106

avs_search_getdocidlen
Returns the length of the document identifier associated with a search result.

C Synopsis

AVSAPI(int) avs_search_getdocidlen (
 IN avs_searchHdl_t searchHdl /* search result handle */
);

Arguments
avs_searchHdl_t searchHdl The handle of the search result for which you are requesting the length of

the document identifier.

Description
The avs_search_getdocidlen procedure retrieves the length of the document identifier for the search result.

Return Values
The length of the document identifier string.

See also
• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

• avs_search_getrelevance

C Programmer’s Reference

5–107

avs_search_getrelevance
Returns the relevance value associated with a search result.

C Synopsis

AVSAPI(float) avs_search_getrelevance (
 IN avs_searchHdl_t searchHdl /* search result handle */
);

Arguments
avs_searchHdl_t searchHdl The handle of the search result for which you are requesting the relevance

value.

Description
The avs_search_getrelevance procedure retrieves the relevance value associated with a search result. The closer
the value is to 1, the more useful and relevant the search result is likely to be.

A search result can also have a relevancy ranking of zero (0). In this case, all results have the same weight or are
equally relevant. A relevancy ranking of zero can happen in the case where the search did not have a ranking
string.

For more details, see Understanding Relevance Ranking.

Return Values
The relevance value, expressed as a floating value (float).

See also
• avs_search_getdata

• avs_search_getdatalen

• avs_search_getdate

• avs_search_getdocid

C Programmer’s Reference

5–108

avs_setdocdata
Sets the document data for a document being added with the avs_newdoc procedure. A filter makes this call.

C Synopsis

AVSAPI(int) avs_setdocdata (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN const void *pDocdata,/* ptr to document data */
 IN int len/* length of doc data (bytes) */
);

Arguments
idx Index handle.

pDocdata Pointer to the document data.

len Length of document data in bytes.

Description
The avs_setdocdata procedure sets the document's data (for example, the title of the document or other
descriptive information). The data can be arbitrary byte-oriented data. A filter calls this procedure after analyzing
the document's content. The data is available after a successful search.

Return Values
AVS_OK or an error code.

See also
• avs_addfield

• avs_addword

• avs_setdocdate

C Programmer’s Reference

5–109

avs_setdocdate
The avs_setdocdate procedure sets the date on a document being added with the avs_newdoc procedure. A filter
makes this call.

C Synopsis

AVSAPI(int) avs_setdocdate (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN int dateY,/* Year 0100 <>2148 */
 IN int dateM, /* Month (1-12) */
 IN int dateD /* Day (1-31) */
);

Arguments
idx The index handle.

dateY The year greater than 01/01/0100 but less than 12/31/2148 inclusive.

dateM The month of the year from 1 to 12.

dateD The day of the month from 1 to 31.

Description
The avs_setdocdate procedure sets the date of the document. A filter calls this procedure.

The date is returned in the search results and can be retrieved by calling avs_search_getdate() on the search
results handle. Dates are indexed and can be used to limit searches by adding a date range as an additional term in
the boolean query string argument passed to avs_search.

The date and time (see avs_setdocdatetime)can also be used to order search results. For further information see
avs_search_genrank.

Return Values
AVS_OK or an error code.

See also
• avs_addfield

• avs_addword

• avs_setdocdata

C Programmer’s Reference

5–110

avs_setdocdatetime
Sets the date and time on a document being added with the avs_newdoc procedure. A filter makes this call.

C Synopsis

AVSAPI(int) avs_setdocdatetime (
 IN avs_idxHdl_t idx, /* Index handle */
 IN int dateY,/* Year (>0100) */
 IN int dateM,/* Month (1-12) */
 IN int dateD,/* Day (1-31) */
 IN int timeH,/* Hour (0-23) */
 IN int timeM,/* Minute (0-59) */
 IN int timeS/* Second (0-59) */
);

Arguments
idx The index handle.

dateY The year greater than 01/01/0100 but less than 12/31/2148 inclusive.

dateM The month of the year from 1 to 12.

dateD The day of the month from 1 to 31.

timeH The hour from 0 to 23.

timeM The minute from 0 to 59.

timeS The seconds from 0 to 59.

Description
The avs_setdocdatetime procedure sets the date and time of the document. A filter calls this procedure.

The date is returned in the search results and can be retrieved by calling avs_search_getdate() on the search
results handle.

Dates are indexed and can be used to limit searches by adding a date range as an additional term in the boolean
query string argument passed to avs_search.

Return Values
AVS_OK or an error code.

See also
• avs_addword

• avs_setdocdata

• avs_setdocdate

C Programmer’s Reference

5–111

avs_setparseflags
Sets avs_addword parsing options.

C Synopsis

AVSAPI(void) avs_setparseflags (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN int parseflags
);

Arguments
idx The index handle.

Description
The avs_setparseflags procedure sets the parsing options for the avs_addword procedure. Currently, either zero
(0) or AVS_PARSE_SGML is the only valid value for this procedure. AVS_PARSE_SGML allows the indexer
to recognize SGML encoded entities as characters and add words containing those characters to the index. For
example, é is the SGML encoding e with the acute accent.

Return Values
AVS_OK or an error code.

See also
• avs_addword

C Programmer’s Reference

5–112

avs_setrankval
Adds a numeric value to a document index that can be used for ranking instead of document date or time.

C Synopsis

AVSAPI(int) avs_setrankval (
 IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
 IN const avs_valtype_t valtype, /* type to use */
 IN unsigned long value/* value */
);

Arguments
idx The index handle.

valtype The value type.

value The value.

Description
The avs_setrankval procedure adds a numeric value to a document index that can be used for ranking. A given
value type defined with avs_define_valtype should be used at most once in a document. Multiple values per
document can be set if the value type is defined with avs_define_valtype_multiple.

Return Values
AVS_OK or an error code.

See also
• avs_addvalue

• avs_define_valtype

• avs_define_valtype_multiple

• avs_search_genrank

C Programmer’s Reference

5–113

avs_startdoc
Prepares to create a new document in the index.

C Synopsis

AVSAPI(int) avs_startdoc (
 IN avs_idxHdl_t idx, /* Index handle */
 IN const char *pDocId, /* document identifier string */
 IN int flags, /* conditions: docid must NOT already exist (1),
 docid MUST already exist (2),
 duplicate docid's allowed (4)*/
 OUT unsigned long *pStartLoc /* first available location in new doc */
);

Arguments
idx The index handle.

pDocId String that identifies the document (limited to 120 bytes and case sensitive).

flags Sets the conditions for creating a new document. The conditions can have the following flags:

• 0 Does not matter whether the document already exists. If it does not exist,
create it. If it does exist, replace it.

• 1 New document. The docid must not already exist.

• 2 Replace an existing document.

• 4 Duplicate document IDs are allowed. If a document with the same ID
already exists, another one can also be created.

pStartLoc Returns the first location available in the index for the new document.

Description
The avs_startdoc procedure creates a new document in the index in a linear fashion useful to applications like
Java and Visual Basic. This procedure must be paired with a call to avs_enddoc to bracket the beginning and end
of the document to be added to the index.

The same arguments in avs_newdoc , with the exception of the filter function and its argument, are also used in
this procedure.

The first location available in the index for the document is returned though the pStartLoc argument. Use this in
the first call to the avs_addword procedure or similar kinds of procedures. When you are finished adding
document contents, call the avs_enddoc procedure to terminate the document.

After a call to the avs_startdoc procedure and before a call to the avs_enddoc procedure, you can use only those
calls which would be allowed in avs_newdoc filter operations (for example, avs_addword or avs_addliteral).

If the flags are set to replace an existing document, and if there are any documents with the specified docid in the
pending document set (those documents added since the last call to avs_makestable), an error
(AVS_DOC_EXISTS) is returned and no documents are added or deleted.

Return Values
AVS_OK or an error code.

C Programmer’s Reference

5–114

See also
• avs_enddoc

• avs_newdoc

C Programmer’s Reference

5–115

avs_timer
Sets a timeout value for query processing.

C Synopsis

AVSAPI(void) avs_timer (
 IN const unsigned long current
);

Arguments
const The value of the timeout range.

Description
The avs_timer procedure is used by an application's timer thread to pass a current timer value from the
application into AltaVista Search. In this way, search operations can be limited in processing duration. If the
application does not have a timer thread, no search timeouts will occur.

In avs_options.timeout, you can set the number of timer units allowed per query. At the start of each search,
AltaVista Search sets a timer limit equal to the current timer value plus the value of avs_options.timeout. It
periodically checks the current timer value against the timer limit. When the current timer value is greater than
the limit, the search process stops and returns the partial results accumulated so far.

Return Values
AVS_OK or an error code.

See also
• avs_enddoc

• avs_newdoc

C Programmer’s Reference

5–116

avs_version
Returns a pointer to library version strings.

C Synopsis

AVSAPI(const char**) avs_version (void);

Description
The avs_version procedure returns the pointer to the library version strings. The version strings can be a search
version or an index version. The strings contain such information as:

• The avs_implementation version

• The interface version

• Whether the application is single or multi-threaded

• The build number

• The license thread

These strings are useful in problem reporting and in keeping track of the current search context.

Return Values
AVS_OK or an error code.

See also
• avs_enddoc

• avs_newdoc

C Programmer’s Reference

5–117

avsi_setdocdata
Sets the document data for an AltaVista Intranet index.

C Synopsis

AVSAPI(int)avsi_setdocdata (
 IN avs_idxHdl_t pIdx, /* Index handle (from avs_open) */
 IN avsi_docdata_t *pDocdata /* Document data */

Arguments
pIdx The index handle from avs_open.

pDocdata The document data.

Description
The avsi_setdocdata procedure sets the document data for an AltaVista Intranet index. Use the avsi_docdata
structure to set the following:

• URL

• Document title

• Document abstract

• Language

• Character set encoding

Return Values
AVS_OK or an error code.

See also
• avsi_docdata structure avsi_getdocdata

C Programmer’s Reference

5–118

avsi_getdocdata
Retrieves the document data from an AltaVista Intranet index.

C Synopsis

AVSAPI(int)avsi_getdocdata (
 IN avs_searchHdl_t searchHdl, /* search result handle */
 OUT avsi_docdata_t *pDocdata /* Document data */
);

Arguments
searchHdl The search handle result.

pDocdata The document data.

Description
The avsi_getdocdata procedure retrieves the document data from an AltaVista Intranet index.

Return Values
AVS_OK or an error code.

See also
• avsi_setdocdata

• avsi_docdata structure

• avsi_url2docid

C Programmer’s Reference

5–119

avsi_url2docid
Creates a suitable document ID from a URL.

C Synopsis

AVSAPI(void) avsi_url2docid (
 IN char *pURL, /* URL string */
 OUT char *pDocid /* ptr to buffer to contain doc ID */

Arguments
pURL The URL string.

pDocid The pointer to buffer to contain doc ID.

Description
The avsi_url2docid procedure creates a suitable document ID from a URL. This ID is used to add or delete a
document to or from the AltaVista Intranet index.

Return Values
AVS_OK or an error code.

See also
• avsi_getdocdata

• avsi_setdocdata

• avsi_url2docid

C Programmer’s Reference

5–120

avsi_convert_to_UTF8
Converts a string of characters from the specified encoding character set to UTF-8.

C Synopsis

 AVSAPI(int) avsi_convert_to_UTF8 (
 IN char *p_buf, /* the string to convert */
 IN int sizebuf, /* length of string to convert */
 OUT char *p_utf8buf, /* buffer to contain UTF8 string */
 IN int size_utf8buf, /* max size of UTF8 buffer */
 IN char * charset /* character set, e.g. EUCKR_NAME */
 /* NOTE: use EUC-CN for 'Simplified Chinese', not GB */
);

Arguments
p_buf The string to convert.

sizebuf The length of the string to convert.

p_utf8buf The buffer to contain UTF8 string.

size_utf8buf The maximum size of the UTF8 buffer.

charset The character set, for example, EUCKR_NAME. See avsi_compat.h.

Description
The avsi_convert_to_UTF8 procedure converts a string of characters from the specified encoding character set
to UTF8. It returns the length of the UTF8 string or a negative number if the conversion failed. If you are
indexing non-ASCII text, use this function to convert the native characters to UTF8. Also, be sure to set the
AVS_CHARSET_UTF8 option when you open the index. Note: use avsi_convert_cjkquery to convert query
strings for searching.

Return Values
The length of the UTF8 string or a negative number

See also
• avsi_convert_from_utf8

• avsi_getdocdata

• avsi_setdocdata

• avsi_url2docid

C Programmer’s Reference

5–121

avsi_convert_from_UTF8
Converts a string of UTF8 characters to the specified encoding character set.

AVSAPI(int) avsi_convert_from_UTF8 (
 IN char *p_utf8buf, /* the UTF8 string to convert */
 IN int size_utf8buf, /* length of UTF8 string to convert */
 OUT char *p_buf, /* buffer to contain converted string */
 IN int sizebuf, /* max size of of buffer */
 IN char * charset /* character set, e.g. EUCKR_NAME (see below) */
 /* NOTE: use EUC-CN for 'Simplified Chinese', not GB */
);

Arguments
p_utf8buf The UTF8 string to convert.

size_utf8buf The length of UTF8 string to convert.

p_buf The buffer to contain converted string.

sizebuf The maximum size of the buffer.

charset The character set, for example, EUCKR_NAME. See avsi_compat.h.

Description
The avsi_convert_from_UTF8 procedure converts a string of UTF8 characters to the specified encoding
character set. It returns the length of the converted string or a negative number if the conversion failed.

Return Values
The length of the converted string or a negative number if the conversion failed

See also
• avsi_convert_to_utf8

• avsi_getdocdata

• avsi_setdocdata

• avsi_url2docid

C Programmer’s Reference

5–122

avsi_convert_cjkquery
Converts a user query in one of the CJK character sets to a query in UTF8 format with space characters between
CJK characters.

C Synopsis

 AVSAPI(int) avsi_convert_cjkquery(
 IN char *p_buf, /* the string to convert */
 IN int len, /* length of string to convert */
 OUT char *p_buf_utf8, /* buffer to contain UTF8 string */
 IN int maxsize_utf8, /* size of UTF8 buffer */
 /* NOTE: should be at least twice the size of the query buffer */
 IN char * p_charset /* character set e.g. EUCKR_NAME (see below) */
 /* NOTE: use EUC-CN for 'Simplified Chinese', not GB */
);

Arguments
p_buf The string to convert.

len The length of the string to convert.

p_buf_utf8 The buffer to contain the UTF8 string.

maxsize_utf8 The maximum size of UTF8 buffer.

p_charset The character set, for example, EUCKR_NAME.

Description
The avsi_convert_cjkquery procedure converts a user query in one of the CJK character sets to a query in UTF8
format with space characters between CJK characters. It returns the length of the UTF8 string or a negative
number if the conversion failed.

Note: this function assumes that the query string is null terminated.

C Programmer’s Reference

5–123

The user query string is converted as shown in the following examples. The double lower-case letters represent
double-byte Asian characters; upper-case letter represent regular ASCII.

 input: ALTAVISTA -aabb "SEARCH ENGINE"
 output: ALTAVISTA -"aa bb" "SEARCH ENGINE"

 input: +DIGITAL aabb97cc +dd "aabb MICRO"
 output: +DIGITAL "aa bb" 97 "cc" +"dd" " aa bb MICRO"

 input: title:HELLOaabbCHINA +"aabb MICRO"
 output: title:HELLO "aa bb" CHINA +" aa bb MICRO"

 input: title:"HELLOaabbCHINA"
 output: title:"HELLO aa bb CHINA"

Return Values
The length of the UTF8 string or a negative number if the conversion failed.

See also
• avsi_convert_to_utf8

• avsi_getdocdata

• avsi_setdocdata

• avsi_url2docid

C Programmer’s Reference

5–124

Data Structures
The data structures and filter procedure are defined in the avs.h file:

avs_options
This structure is used to specify search options in the avs_search procedure. Call
avs_default_options to initialize to default values. This structure contains the timeout
parameter that controls the number of seconds to allow for each query.

 struct avs_options {
 long limit; /* maximum number of documents returned
(default=32000) */
 int timeout;/* if nonzero, number of seconds to allow per query
*/
 int flags;/* additional query option flags */
 };
 typedef struct avs_options avs_options_t, *avs_options_p_t;

The following flags are additional query option flags set in the avs_options structure:

• AVS_OPT_FLAGS_RANK_TO_BOOL - if set to 1, the behavior is that of the simple
query, filtered by the boolean expression, that is, the results are the of what would be
produced by the simple query and the boolean query separately.

• AVS_OPT_FLAGS_NO_POS_BOOST - if set to 1, eliminate the higher weighting of
words occurring at the beginning of a document.

• AVS_OPT_FLAGS_NO_LOGGING -if set to 1, no logging occurs during the
querying operations.

• AVS_OPT_FLAGS_RANK_LATEST – if set to 1, the most recent documents added
to the index are ranked higher. If this flag is off, documents added later will be ranked
lower.

avs_parameters
The avs_parameters structure is used to affect all index operations. The parameters should
maintain a constant value for the life of the application and if you change any, you should
rebuild your index for consistency. The following operations can be managed by this structure:

• The interface version

• The license management

• The search operations

• The structure of the index

C Programmer’s Reference

5–125

struct avs_parameters {
 char * _interface_version; /* checked by library */
 char * license; /* set to OEM license string */
 int ignored_thresh; /* %(*100) for ranking ignore */
 int chars_before_wildcard; /* min chars before wildcard */
 int unlimited_wild_words; /* set to 1 to avoid 50 limit */
 int indexformat; /* set to -1 for default, 0 for current */
 long cache_threshold; /* max size file to cache (0=default)
*/
 int options; /* optional indexing features */
 int charset; /* character set in use */
 int ntiers, nbuckets; /* max values (0 => use default) */
 };

These parameters affect all operations and are intended to have a constant value for the life of
the application:

• _interface_version;

• license;

The next few parameters affect search operations but not the index structure itself:

• ignored_thresh

• chars_before_wildcard

• unlimited_wild_words

• indexformat

• cache_threshold

The following parameters affect the index structure, and can vary across indexes. However,
they should be consistent over time for any given index or the results are undefined.

• options

• charset

• ntiers, nbuckets

Default Values
The avs.h file sets the following parameters with these default values:

typedef struct avs_parameters avs_parameters_t;
 #define AVS_PARAMETERS_INIT { \
 _AVS_INTERFACE_VERSION, \
 NULL, \
 1000, \
 3, \
 0, \
 -1, \
 500000L, \
 7, \
 AVS_CHARSET_LATIN1, \
 0,0}

C Programmer’s Reference

5–126

• The interface version is set to _AVS_INTERFACE_VERSION.

• The license string is set to NULL.

• The ignore threshold is set to 1000 (ranking ignore).

• The minimum characters before a wildcard character is set to 3.

• The unlimited number of characters after a wildcard is set to 0. Set the value to 1 if
you want more than 50 characters after a wildcard.

• The index format is set to the default.

• The cache threshold is set to 500,000 bytes for the maximum size file.

• The options are set to 7 to enable the AVS_OPTION_SEARCHSINCE,
AVS_OPTION_RANKBYDATE, AVS_OPTION_SEARCHBYDATE features.

• The character set is set to Latin1.

• The maximum values for tiers and buckets is set to 0.

Index Management
You can disable the following features and thereby reduce index overhead somewhat:

• AVS_OPTION_SEARCHSINCE

• AVS_OPTION_RANKBYDATE

• AVS_OPTION_SEARCHBYDATE

Each option is represented by a bit position in the options element of the avs_parameters
structure.

Index for AVSI Compatibility
To initialize the index for compatibility with an AltaVista Search Intranet V2.3 index use
AVS_PARAMETERS_AVSI_COMPATIBILITY:

#define AVS_PARAMETERS_AVSI_COMPATIBILITY { \
_AVS_INTERFACE_VERSION, \

NULL, \
1000, \
3, \
0, \
1, \
500000L, \
0xf, \
AVS_CHARSET_LATIN1, \
0,0}

The only difference between AVS_PARAMETERS_AVSI_COMPATIBILITY and
AVS_PARAMETERS_INIT is in the setting of the
AVS_OPTIONS_AVSI_COMPATIBILITY bit in the options element.

C Programmer’s Reference

5–127

Converter Structures and Parameters
AltaVista Search Developer's Kit document converter API converts various document types to
text or HTML. It contains technology from Inso Corporation, Adobe Systems Incorporated and
Compaq Computer Corporation. The Inso filters actually evaluate what type of file it is by
opening the file and analyzing the contents (rather than by just looking at the file type). The
exceptions are PDF and PostScript files. PDF files are handed off to the Adobe PDF filter and
PostScript files are handed off to the Compaq PostScript filter. Use the following structure with
the avs_convert_init procedure to set the various converter parameters:

 struct avs_convert_params {
 char *cvtpath; /* Converter pathname ('dictionary' file
must be here) */
};
typedef struct avs_convert_params avs_convert_params_t;

Character Sets You Can Index
The AltaVista Search Developer's Kit supports the character sets at its API:

• ISO LATIN 1

• UTF8

• ASCII 8 bit

A given index must use only one of these character sets. The character set is specified in the
charset element of the avs_parameters structure.

AVSI Compatibility Structures
You can now write or read data to or from an index created by the AltaVista Search Intranet
(AVSI) product. The data written into an AVSI index by a Developer's Kit application can be
used in query operations performed by users of the AVSI product using the AVSI mhttpd
query server. Likewise, data written into an AVSI index by the AVSI indexer can be read by
the Developer's Kit applications and used in query operations performed by these applications.

You may share an index between an SDK application and AltaVista Search Intranet V2.3 for
searching, only. When writing into an AVSI index by a Developer's Kit application, the AVSI
product must not be running.

The C API versions of the AVSI compatibility components are called avsi26_mt.dll and
libavs26_r.a for NT and Unix, respectively. Please see the include file avsi_compat.h (source
directory) and the sample code in avsi_sample.c (source/avsi_sample directory) for information
on how to use the C API.

Use the following structure in conjunction with avsi_setdocdata and avsi_getdocdata
procedures to read and write information about the document.

C Programmer’s Reference

5–128

struct avsi_docdata {
 unsigned long szDoc; /* size of document, in bytes */
 char URL[AVS_MAX_URL_SIZE+1]; /* document's URL */
 char Title[AVS_MAX_TITLE_SIZE+1]; /* document's title */
 char Abstract[AVS_MAX_ABSTRACT_SIZE+1]; /* document's abstract
*/
 char Language[3]; /* doc's language code (e.g. "en").

 char Charset[15]; /* doc's character set./
};
typedef struct avsi_docdata avsi_docdata_t;

The maximum values for URL, title, and abstract sizes are as values:

• AVS_MAX_URL_SIZE - The maximum size of a URL is 1000 characters.

• AVS_MAX_ABSTRACT_SIZE - The maximum size of the document abstract is 155
characters.

• AVS_MAX_TITLE_SIZE - The maximum size of the document title is 80 characters.

The other options you can set with the Search product's document data is the document's
language code and the document's character set.

The following table lists the ISO 639 2-character languages codes to use with avsi_docdata
structure. All documents should have a language definition. Use of the unknown language type
may result in incorrect translation of the document data. For more information see the
avsi_compat.h file.

Code Language Code Language Code Language

da Danish de German en English

ar Arabic bg Bulgarian el Greek

cs Czech es Spanish et Estonian

fi Finnish fr French hu Hungarian

is Icelandic it Italian ja Japanese

ko Korean lt Lithuanian lv Latvian

nl Dutch no Norwegian pt Portuguese

ro Romanian ru Russian sl Slovenian

sv Swedish th Currently
empty tr Turkish

zh Chinese pl Polish ne Niger

C Programmer’s Reference

5–129

The character set encodings are contained in the following table to use in the avsi_docdata
structure. All documents should have a defined character set. use of the unknown character set
may result in incorrect translation (no translation) of the document data.

Character Set Character Set Character Set

iso88591 Western (ISO-8859-1) iso88592 Central European (ISO-
8859-2) iso88593 (ISO-8859-3)

iso88594 (ISO-8859-4) iso88595 Cyrillic (ISO-8859-5) iso88596 Arabic (ISO-8859-
6)

iso88597 Greek (ISO-8859-7) iso88598 Hebrew (ISO-8859-8) iso88599 Turkish

iso885910
Latin 6 -
Lappish/Eskimo/Nordic
languages

koi8r Cyrillic (KOI8-R) ascii ASCII

jis Japanese sjis Japanese (Shift-JIS) euc Japanese

gb Simplified Chinese big5 Traditional Chinese
(Big5) euctw Traditional

Chinese

euccn Chinese (GB) eucjp Japanese (EUC) euckr Korean (KSC)

utf8 Unicode hz Mixed Chinese and
ASCII characters cp1250 Central European

(Windows-1250)

cp1251 Cyrillic (Windows-
1251) cp1252 Western (Windows-

1252) cp1253 Greek (Windows-
1253)

cp1254 Arabic (Windows-1254) cp1255 Hebrew (Windows-
1255) cp1256 Arabic

cp1257 Baltic (Windows-1257) cp1258 Vietnamese (Windows-
1258) jis0212 Japanese

At this time ISO88599, ISO885910, JIS, EUC, GB, EUCTW, UTF8, HZ, CP1256, JIS0212. are
not supported in the AVSI product.

Filter Procedure
The avs_newdoc filter procedure must match the following filter prototype:

typedef int (*filter_p_t)
 (
 IN avs_idxHdl_t,
 IN void *,
 IN unsigned long,
 OUT unsigned long *
);

C Programmer’s Reference

5–130

6–131

6
Visual Basic Reference Section

The AltaVista Search Developer's Kit includes an ActiveX component that greatly simplifies
development of applications using Visual Basic. The kit includes the following files:

• avs26X_mt.dll for the AVSIndex Class.

• avscvt26.dll for AVSDocument Class.

It is assumed that you have Visual Basic Version 5.0 installed on your system and are running
on Windows NT Version 4.0.

Naming Conventions
The naming conventions of various index properties and search results properties are:

• iopt - Index options

• sopt -Search options

• sres - Search results

• cres - Counts results

Class AvsIndex
The AVSIndex object contains the index methods and properties.

Visual Basic Reference Section

6–132

adddate function
Adds an additional date to the document.

Function adddate(year As Long, month As Long, day As Long,
startloc As Long) As Long

Argument

year Integer that specifies the year.

month Integer that specifies the month.

Day Integer that specifies the day.

startloc Location in the document for the date.

Description

The adddate function indexes the supplied date in standard format at the indicated location.
Applications can submit advanced queries for specific dates or date ranges contained in a field
using the format fied:[date range]. This function can also be used to associate multiple dates
with a document.

Return Value

Returns 0 or an error code.

See Also

• addfield

• addliteral

• addvalue

• addword

• setdocdate

• setdocdatetime

Visual Basic Reference Section

 6–133

addfield function
Adds a field to document

Function addfield(fieldName As String, startloc As Long, endloc
As Long)As Long

Argument

 fieldName String that specifies the name of the field to be added to the index.

Startloc Location of the first word in the field.

endloc Location of the first word that follows the field.

Description

The addfield function marks a set of locations in a document as belonging to a field. The
startloc and endloc arguments define the boundaries of the field. Application users can submit
queries for specific contents of the named field, using the format fieldname:value.

Return Value

Returns 0 or an error code.

See Also

• adddate

• addliteral

• addvalue

• addword

Visual Basic Reference Section

6–134

addliteral function
Adds a literal string to the document.

 Function addliteral(word As String, startloc As Long) As Long

Argument

word Single string that specifies the word to add.

startloc Location in the index of where to add the string to the index.

Description

The addliteral function adds a single word and without interpretation or conversion to a
document index.This function does not scan the literal string in any way, but rather adds it to
the index as is. Use with caution or not at all, as words added this way are possibly not
searchable with the standard query procedures.

To perform a search when the literal string you are looking for contains special characters (for
example, the forward slash (/)), you can use curly braces({}) in the Boolean (advanced) query
string as in the following example: {cnn/xyz}. All characters between the matching curly
braces are treated as a word, except the asterisk (*) which still works as a wildcard.

Note: Words starting with a non-alphanumeric character are reserved for internal use.

Return Value

Returns 0 or an error code.

See Also

• adddate

• addfield

• addliteral

• addword

Visual Basic Reference Section

 6–135

addvalue function
Adds a searchable value to the document.

Function addvalue(type_name As String, value As Long, startloc
As Long)As Long

Argument

type_name Name of a value type defined previously with define_valtype.

value The value (integer) of the type to be added to the index.

startloc The location of the type in the index.

Description

The addvalue function indexes the supplied value at the specified location in the index. Value
types are defined with the define_valtype function. The addvalue function allows the value to
be searched in a Boolean query expression, for example, [lines:1-100].

Return Value

Returns 0 or an error code.

See Also

• adddate

• addfield

• addword

• define_valtype

• setrankval

Visual Basic Reference Section

6–136

addword function
Adds a word or words to a document.

Function addword(words As String, startloc As Long) As Long

Argument

words The words to add to the index.

startloc Location value to assign to the first word.

Description

The addword function adds words to the index. A word is defined as a contiguous string of
alphanumerics, bounded by non-alphanumerics (like spaces and special characters), as defined
in the ISO Latin-1 standard.

This function should be called after startdoc. Call the addword_numwords property to get the
number of words added to the index.

Return Value

Returns 0 or an error code.

See Also

• adddate

• addfield

• addliteral

• addvalue

• addword_numwords

Visual Basic Reference Section

 6–137

addword_numwords property
Returns the number of words added.

Property addword_numwords As Long
read-only

Description

The addword_numwords property returns the number of words added to the index by the
addword function.

Return Value

Returns the number of words added to the index.

See Also

 addword

Visual Basic Reference Section

6–138

avs_version property
Returns the version number of the Developer's Kit.

Property avs_version As String
read-only

Description

The avs_version function returns a list of index version strings. Each string in the list is
enclosed in double quotes (""). The list contains information relevant to the product version,
such as, the implementation version, the interface version, whether it is single or multi-
threaded, the build number, and the license version.

Return Value

Returns list of index version strings.

Visual Basic Reference Section

 6–139

buildmode function
Sets the index to buildmode.

Function buildmode(nTiers As Long) As Long

Argument

nTiers The number of tiers (set of buckets) the index is allowed to use.

Description

The buildmode function optimizes the specified index for building or adding to the index.
Querying during this state would degrade the response to the query. This function could be
called from your application for those instances when you want to build an index and users
would be unlikely to query the index. The new mode takes effect immediately. This state of the
index will be retained for the next time the index is opened, if a call to makestable or compact
is made.

Return Value

Returns 0 on success or an error code.

See Also

• compact

• makestable

Visual Basic Reference Section

6–140

close function
Closes the index.

Function close () As Long

Description

The close function closes the specified index and releases all resources. Make sure you have
closed any outstanding search or counts handles before closing the index.

Return Value

Returns 0 or an error code.

See Also

• makestable

• open

Visual Basic Reference Section

 6–141

compact function
Compacts an index.

Function compact() As Long

Description

The compact function causes one or more levels of compaction on the index. If the returned
value of a call to compact_moreneeded is 0, the compaction is complete. If the returned value is
1, call the compact function again to further compact the index.

You should compact the index periodically or after a series of updates is complete. Compacting
the index improves subsequent query performance and frees the space used by documents that
have been deleted. It is possible to submit search queries to the index (in other threads) while it
is being compacted, but you cannot add, update, or delete information until compaction is
complete.

Return Value

Returns 0 or an error code.

See Also

• compact

• compact_moreneeded

• makestable

Visual Basic Reference Section

6–142

compact_minor function
Performs minor index compaction.

Function compact_minor () As Long

Description

The compact_minor function causes one or more levels of compaction on the index but without
recovering space from deleted index entries. Use this function when the effects of regular
compaction would be detrimental to your system resources. If a call to compact_moreneeded
returns a value of 0, the compaction is complete. If compact_moreneeded returns 1, call the
compact_minor function again to further compact the index.

You should compact the index periodically or after a series of updates is complete. Compacting
the index improves subsequent query performance. It is possible to submit search queries to the
index while it is being compacted, but you cannot add, update, or delete information until
compaction is complete.

Return Value

Returns 0 or an error code.

See Also

• compact

• compact_moreneeded

• makestable

Visual Basic Reference Section

 6–143

compact_moreneeded property
Returns a value which specifies if more compaction is needed.

Property compact_moreneeded As Long
read-only

Description

The compact_moreneeded property returns a value of 0 or 1. If the return is zero (0), there is no
further compaction required on the index. If the return is 1, then more compaction is required.

Use this property in conjunction with compact and compact_minor functions.

Return Value

Returns a non-zero value if the index requires further compaction.

See Also

• compact

• compact_minor

• makestable

Visual Basic Reference Section

6–144

compactionneeded function
Returns a compaction needed status.

Function compactionneeded() As Long

Description

The compactionneeded function returns non-zero value if the index needs compaction.

Return Value

Returns non-zero value if the index needs compaction.

See Also

• compact

• compact_minor

• compact_moreneeded

• makestable

Visual Basic Reference Section

 6–145

count function
Counts word occurrences.

Function count(WordPrefix As String) As Long

Argument

WordPrefix The value of a word or portion of a word. All words that begin with this
character string are returned, one at a time, through the countnext function.

Description

The count function is used in conjunction with cres_countnext to enumerate index entries that
match the specified word or prefix.

The count is not adjusted for deletions if they have occurred since the last time the index has
been compacted.

To enumerate the entire contents of the index, use a null string ("")for the WordPrefix
argument. This function will return a count handle for all index entries including those that
have been deleted.

The count function returns the counts handle or a -1 if there is an error. To get the error, call
lasterror.

Return Value

Returns the counts handle or -1.

See Also

• count_close

• cres_countnext

• cres_word

• cres_wordcount

• lasterror

Visual Basic Reference Section

6–146

count_close function
Terminates a count.

Function count_close(counthandle As Long) As Long

Argument

counthandle The value of the counthandle.

Description

The count_close function closes a count request. After all calls to countnext are complete, call
count_close to release the resources allocated for the count.

Return Value

Returns 0 or an error code.

See Also

• count

• cres_countnext

• cres_word

• cres_wordcount

Visual Basic Reference Section

 6–147

cres_countnext function
Retrieves the next word occurrence.

Function cres_countnext(counthandle As Long) As Long

Argument

counthandle The value of the counts handle from count.

Description

The cres_countnext function retrieves the next (or first) index entry that matches the prefix
specified in the count function. The properties cres_word and cres_wordcount return the actual
word and the number of times it occurs in the index, respectively. The function returns a non-
zero status code there are no more word occurrences to retrieve.

Return Value

Returns a non-zero status code when there are no more word occurrences to retrieve.

See Also

• count

• count_close

• cres_word

• cres_wordcount

Visual Basic Reference Section

6–148

cres_word property
Retrieves a word.

Property cres_word(counthandle As Long) As String
read-only

Argument

counthandle The value of the counts handle from the counts method.

Description

The cres_word property retrieves the word corresponding to the most recent call to
cres_countnext.

Return Value

Returns a word.

See Also

• count

• count_close

• cres_countnext

• cres_wordcount

Visual Basic Reference Section

 6–149

cres_wordcount property
Retrieves the word count.

Property cres_wordcount(counthandle As Long) As Long
read-only

Argument

counthandle Value of the counts handle from the counts method.

Description

The cres_wordcount property retrieves the word count corresponding to the most recent call to
cres_countnext.

Return Value

Returns the word count.

See Also

• count

• count_close

• cres_countnext

• cres_word

Visual Basic Reference Section

6–150

define_valtype function
Defines a value type for ranking purposes.

Function define_valtype(name As String, minval As Long, maxval
As Long) As Long

Argument

name String that contains the name of the value type.

minval Long with the minimum value of the value type.

maxval Long with the maximum value of the value type.

Description

The define_valtype function lets you define your own value type which can be used to rank
search results. For example, you may define the value type lines to count the number of lines
per document. With the type name, you also must supply the lowest to the highest possible
values. In your application, use a call to setrankval function to set a ranking value for each
document in the index. To index the new type, call the addvalue function.

To use the value type to rank search results, use search_genrank function and pass the value
type in the RankTerms argument, for example, lines. To have the search results ranked in
reverse order (lowest value first), use -lines. .

To use the value type in a Boolean search, use the search function. In the BoolQuery argument,
use the syntax: [valtype:range], for example, [lines:1-500].

The define_valtype function is an application-wide function and, therefore, affects all the
indexes that are open. You must call define_valtype before you open the index. Call the
release_valtypes function after the last call to close to release the resources associated with the
value types.

Return Value

Returns 0 or an error code.

See Also

• addvalue

• setrankval

Visual Basic Reference Section

 6–151

define_valtype_multiple function
Defines a value type for filtering on multiple values.

Function define_valtype_multiple(name As String, minval As
Long, maxval As Long, numvalues As
Long) As Long

Argument

 Description

name String that contains the name of the value type.

minval Long with the minimum value of the value type.

maxval Long with the maximum value of the value type.

numvalues Maximum number of multiple filtering values.

Description

The define_valtype_multiple function lets you define your own value type to add a set of
values to a document.

Subsequently, these values can be used to filter search results. With the type name, you also
must supply the minimum to maximum range possible for values. The numvalues parameter
determines the maximum number of multiple values allowed for the valtype for each document.

In your filter application, use multiple calls to the setrankval function to set a value for each
document in the index.

To use the value type to filter search results, use search_genrank function and use the value
type in the RankTerms argument. For example, [myval?(1,5)] filters the search results to those
documents that contain a value of 1 or 5 in the myval valtype.

The define_valtype_multiple function is an application-wide function and, therefore, effects all
the indexes that are open. You must call define_valtype_multiple before you open the index.
Call the release_valtypes function after the last call to close to release the resources associated
with the value types.

Return Value

Returns 0 or an error code.

See Also

• addvalue

• define_valtype

• setrankval

Visual Basic Reference Section

6–152

deletedoc function
Deletes a document with the specified document identifier.

Function deletedoc(docId As String) As Long

Argument

docId Case-sensitive string that identifies the document (limited to 120 bytes).

Description

The deletedoc function marks for deletion all documents with a specified docid (if any exist).
For the documents to actually be deleted you must call the makestable function. If you insert
the call to makestable immediately after the deletedoc function, the deletion will occur
immediately. To retrieve the number of documents deleted, call deletedoc_numdeleted.

Note: The docId string is case sensitive.

Return Value

Returns 0 or an error code.

See Also

• compact

• deletedoc_numdeleted

• makestable

Visual Basic Reference Section

 6–153

deletedoc_numdeleted
Returns the number of deleted documents.

Property deletedoc_numdeleted As Long
read-only

Description

The deletedoc_numdeleted property returns the number of documents deleted by deletedoc.
Use this property in conjunction with the function deletedoc

Return Value

Returns the number of documents which were deleted by deletedoc.

See Also

• deletedoc

Visual Basic Reference Section

6–154

enddoc function
Terminates a document added with startdoc.

Function enddoc () As Long

Description

The enddoc function terminates a document created in the index by the startdoc function.
Document contents arehadded to the index by a call to startdoc and terminated by the enddoc
function.

Return Value

Returns 0 or an error code.

See Also

• startdoc

Visual Basic Reference Section

 6–155

errmsg function
Converts an error code to a string.

Function errmsg(status As Long) As String

Argument

status The error code returned from AvsIndex functions.

Description

The errmsg function returns a text message associated with an error status code.

Return Value

Returns an error message text.

Visual Basic Reference Section

6–156

getindexmode property
Retrieves the current index mode.

Property getindexmode As Long
read-only

Description

The getindexmode property returns 0 if the index is in query mode, or 1 if the index is in build
mode. See Optimizing for speed to learn about build and query mode.

Return Value

Returns 0 or 1.

See Also

• buildmode

• compact

Visual Basic Reference Section

 6–157

indexversion property
Retrieves the index version number.

Property indexversion As Long
read-only

Description

The indexversion property is used to return an integer value corresponding to the current
version of the index. This value increases with each call to makestable, compact, or
compact_minor.

Return Value

Returns index version number.

Visual Basic Reference Section

6–158

iopt_cache_threshold property
Determines the cache threshold.

Property iopt_cache_threshold As Long

Description

The iopt_cache_threshold property determines the maximum size of the index file that will be
memory-mapped during an indexing process. The larger values will cause better performance
but require larger amounts of virtual memory to be available. The default value is 500000 (0.5
MB).

Return Value

None, this is a write-only property.

See Also

• iopt_ignored_threshold

Visual Basic Reference Section

 6–159

iopt_chars_before_wildcard property
Determines the number of characters required before a wildcard search.

Property iopt_chars_before_wildcard As Integer

Description

The iopt_chars_before_wildcard property provides the ability to change the number of
characters before the wildcard (*) from the default of 3. The number can be zero (0) or greater.

Return Value

None, this is a write-only property.

Visual Basic Reference Section

6–160

iopt_charset property
Sets the character set for the index.

Property iopt_charset As Integer

Description

The iopt_charset property provides the ability to change the character set from the default set of
ISO Latin 1 to UTF8 or ASCII 8 . The values of the respective character sets are:

ISO Latin 1 0

UTF8 1

ASCII 8 2

Return Value

None, this is a write-only property.

Visual Basic Reference Section

 6–161

iopt_enable_rankbydate property
Enables or disables the rank-by-date feature.

Property iopt_enable_rankbydate As Integer

Description

The iopt_enable_rankbydate property enables the search method to rank the results using the
date of the document.

By default, this property is enabled and effects all searches performed on the index. If the
integer is zero (0), this feature is disabled.

Return Value

Returns nothing.

See Also

• iopt_enable_searchbydate

Visual Basic Reference Section

6–162

iopt_enable_searchbydate property
Enables or disables the search-by-date feature.

Property iopt_enable_searchbydate As Integer

Description

The iopt_enable_searchbydate property enables the search method to return documents that
match the specified date of the search criteria. By default, this property is enabled and effects
all searches performed on the index. If the integer is zero (0), the iopt_enable_searchbydate
property is disabled.

Return Value

Returns nothing.

See Also

• sopt_rank_to_boolean

Visual Basic Reference Section

 6–163

iopt_enable_searchsince property
Enables or disables the search-since feature.

Property iopt_enable_searchsince As Integer

Description

The iopt_enable_searchsince property enables the search method to return documents added
since the last search operation. By default, this property is enabled and effects all searches
performed on the index. If the integer is zero (0), the iopt_enable_searchsince property is
disabled.

Return Value

Returns nothing.

See Also

• iopt_enable_rankbydate

• iopt_enable_searchbydate

• search

• search_genrank

• sopt_rank_to_boolean

Visual Basic Reference Section

6–164

iopt_ignored_threshold property
Sets the ignored-threshold feature.

Property iopt_ignored_threshold As Long

Description

The iopt_ignored_threshold property is the number given in one hundredths of a percent (for
example, 1000 is 10 percent) that controls when a ranking term is to be ignored. Any ranking
terms whose occurrences in the index account for a greater percentage of the total percentages
than this number is ignored for ranking purposes. The default value is 1000 or 10 percent.

Return Value

Returns nothing.

See Also

• iopt_cache_threshold

Visual Basic Reference Section

 6–165

iopt_indexformat property
Sets the current index format version number.

Property iopt_indexformat As Integer

Description

The iopt_indexformat property sets the value of the current index format as follows:

Value Description

0 Default (now Version 2)

1 Version 1

2 Version 2

The Version 2 index format generates a slightly larger index (approximately 10% larger), but it
is slightly faster to search than in index an Version 1 format.

Return Value

None.

Visual Basic Reference Section

6–166

iopt_nbuckets property
Sets the number of buckets used by the index.

Property iopt_nbuckets As Integer

Description

The iopt_nbuckets property determines the maximum number of buckets the index is allowed
to use. Buckets are the hash modulus for splitting the index by word. The value of this property
determines the number of the index files across which index entries are spread (by hashing). If
this number is increased, the number of index files is increased but the size of the individual
files should be smaller. The maximum number of buckets allowed is 500 and is set in the avs.h
file.

The nbuckets and ntiers are index scaling properties that you can use to tune your system's
memory configuration parameters.

Tiers are the sets of buckets the index is allowed to use. The tiers parameter value determines
the maximum number of sets of buckets to which the index can grow during operations that
add, delete, or update the index. Each call to avs_makestable creates a new tier in the index,
and calls to avs_compact or avs_compact_minor are then used to reduce the tiers again.

When building a very large index, it is better to have a larger value as it reduces the number of
compactions needed during building. However, query operations may take longer when more
tiers are in use (more index files to examine for each index entry). The default values of tiers
can be tuned with a nominal range of values from 4 - 40. Smaller values are appropriate for
more searching, while the larger values are appropriate for more indexing.

Return Value

Returns nothing.

See Also

• iopt_ntiers

Visual Basic Reference Section

 6–167

iopt_ntiers property
Sets the number of tiers used by the index.

Property iopt_ntiers As Integer

Description

The iopt_ntiers property determines the maximum number of sets of buckets to which the index
can grow during operations that add, delete, or update the index. The nbuckets and ntiers are
index scaling properties that you can use to tune your system's memory configuration
parameters. Each call to avs_makestable creates a new tier in the index, and calls to
avs_compact or avs_compact_minor are then used to reduce the tiers again. The default values
can be tuned with a nominal range of values from 4 - 40. Smaller values are appropriate for
more searching, while the larger values are appropriate for more indexing.

Buckets are the hash modulus for splitting the index by word. The value of this property
determines the number of the index files across which index entries are spread (by hashing). If
this number is increased, the number of index files is increased but the size of the individual
files should be smaller. The maximum number of buckets allowed is 500 and is set in the avs.h
file.

When building a very large index, it is better to have a larger value as it reduces the number of
compactions needed during building. However, query operations may take longer when more
tiers are in use (more index files to examine for each index entry).

Return Value

Returns nothing.

See Also

• iopt_nbuckets

Visual Basic Reference Section

6–168

iopt_parsesgml property
Parses SGML tags during indexing.

Property iopt_parsesgml as Integer

Description

The iopt_parsesgml property enables or disables the parsing of SGML tags during indexing.
Currently, either zero (0) or 1 is the only valid value for this property. When the flag is set to 1,
it enables the indexer to recognize SGML encoded entities as characters and add words
containing those characters to the index. For example, é is the SGML encoding for e
with the acute accent.

Return Value

Returns nothing.

Visual Basic Reference Section

 6–169

iopt_unlimited_wild_words property
Sets the number of words returned by wildcard searches to unlimited.

Property iopt_unlimited_wild_words As Integer

Description

The iopt_unlimited_wild_words property sets the number of words returned by a wild card
search to unlimited. The default value is 50 words matching the query. If more than 50 words
match the query, the results are ranked by frequency. This does not effect the ranking done by a
Boolean search.

Return Value

Returns nothing.

See Also

• iopt_chars_before_wildcard

Visual Basic Reference Section

6–170

lasterror property
Returns the last error from search, counts, or search_genrank.

Property lasterror As Long
read only

Description

The lasterror property returns the last error from the search, counts or search_genrank
functions. This is usually an error related to an index, search, or counts handle. If the search or
counts handle is -1, use this property to determine the error status.

Return Value

Returns an error status.

See Also

• addword

Visual Basic Reference Section

 6–171

makestable function
Makes the index stable.

Function makestable() As Long

Description

The makestable function saves recent deletions or additions made to the index file. The
documents and words added to the index are flushed to the disk, and all documents marked for
deletion by a previous call to deletedoc, are deleted. This function should be called before
closing the index and after every 500,000 or so words have been indexed.

The makestable function finishes the job of adding and deleting documents and makes the
newly added documents searchable while removing the documents marked for deletion by the
deletedoc function.

The application should also compact the index after a series of updates is completed, to
improve subsequent query performance and to recover space from deleted entries.

Return Value

Returns 0 or an error code.

See Also

• compact

• compact_minor

• sopt_rank_to_boolean

Visual Basic Reference Section

6–172

open function
Opens an index.

Function open(path As String, mode As String) As Long

Argument

path The full or relative path of the index directory on disk.

mode Specifies whether the index should be opened as a read only (r) or a read write
(rw) index.

Description

The open function opens the index pointed to by the path argument. The mode parameter can
be either "r" for read only, "rw" for read-write, and "ro" for CD-ROM. When "rw" is set, the
index is opened for reading and writing. Appropriate locks are set to interlock reads and
updates in other processes.

Note: The directory specified by path must exist. If the directory specified by path is empty, a
new index will be created with the correct permissions.

Return Value

Returns 0 or an error code.

See Also

• close

Visual Basic Reference Section

 6–173

querymode

Sets an index to query mode.

Function querymode() As Long

Description

The querymode function optimizes an index for response to user queries. This allows users to
get optimal response in querying the index when use of the query interface is high. The new
mode takes effect immediately. To retain this state for the next time the index is opened, you
must make a call to the makestable or compact functions.

When your program calls this function, it causes a full compaction of the index.

Return Value

Returns 0 or an error code.

See Also

• buildmode

Visual Basic Reference Section

6–174

release_valtypes function
Releases any value types have been defined.

Function release_valtypes() As Long

Description

The release_valtypes function releases any value types that have been defined. This function
should only be called after your application's last call to close.

Return Value

Returns 0 or an error code.

See Also

• define_valtype

Visual Basic Reference Section

 6–175

search function
Searches the index.

 Function search(SimpleQuery As String, BoolQuery As String,
 SearchSince As String) As Long
Argument

SimpleQuery Simple (or ranking) query expression. May be NULL.

BoolQuery A boolean query expression. May be NULL.

SearchSince Version string or NULL.

Description

The search function initializes a search for documents in an index file that match a simple
query expression and the given search parameters. A simple query expression can contain
words, phrases, the asterisk (*) wildcard character, and the + and - operators, which require or
prohibit the presence of a word in the search results.

Given a simple query expression and other search parameters (like date ranges, boolean
qualifier, and so forth) this function searches the index and returns a handle which can be used
to retrieve:

• the number of documents found

• the number of documents actually returned for inspection

• specific search results corresponding to a document

• the matching terms from the query expression

It is possible to use this interface to perform consistently with either the AltaVista simple
search or the AltaVista advanced search function (as seen at http://altavista.digital.com). You
can also effectively combine both approaches in one call.

To Perform a Simple Search

Use the pQuery argument to point to the simple query string. Do not use the pBoolean
argument. Set the sopt_ranktoboolean property to 1.

To Perform an Advanced Search

Use the pQuery argument to point to ranking terms. Use the pBoolean argument to point to the
advanced query string. Set the sopt_ranktoboolean property to 0.

The Combined Approach -- Simple Query with Boolean Qualifiers

Use the pQuery argument to point to the simple query string and use the pBoolean argument to
point to the advanced query string. Set the sopt_ranktoboolean property flag to 1. In this case,
the behavior is that of the simple query, filtered by the boolean expression, that is, the results
are the intersection of what would be produced by the simple query and the boolean query
separately.

The search function returns the search handle as the value of the method or a -1 for an error. To
get the error, call lasterror. For more information, see Searching the Index. In all cases, the
results are ranked according to the relative weighted occurence of the (non-negative) terms in
the simple query (or ranking) string. If there are no such terms, the result is unranked.

Visual Basic Reference Section

6–176

Return Value

Returns the search handle as the value of the method or -1.

See Also

• search_genrank

• search_getterms

• sres_day

• sres_docdata

• sres_docid

• sres_docsfound

• sres_docsreturned

• sres_month

• sres_relevance

• sres_searchversion

• sres_termcount

• sres_year

Visual Basic Reference Section

 6–177

search_close function
Terminates a search.

Function search_close(searchhandle As Long) As Long

Argument

searchhandle The search handle from search or search_genrank.

Description

The search_close function closes a search. This must be called when all calls to
search_getresults are completed, to release the resources allocated for a search.

Return Value

Returns 0 or an error code.

See Also

• search

• search_genrank

Visual Basic Reference Section

6–178

search_genrank function
Searches an index and ranks the results.

 Function search_genrank(BoolQuery As String, RankTerms As
String, SearchSince As String) As Long

Argument

BoolQuery A Boolean query expression or NULL.

RankTerms A string containing the ranking terms.

SearchSince A search version string.

Description

The search_genrank function enables you search for the extended value types added by the
addvalue function. This function lets you search for the boolean query expression and rank the
results using the ranking expression. The RankTerms argument in the search_genrank function
can be either a predefined term (for example, #date) or an application-defined value type (for
example, lines). To rank the results in reverse order, that is, lowest value first, precede the term
with a minus sign (-), for example, -#date or -lines.

The search_genrank function returns the search handle or -1 if there is an error. To get the
error, call lasterror.

Return Value

Returns the search handle as the value of the method or -1.

See Also

• lasterror

• search

• search_close

Visual Basic Reference Section

 6–179

search_getresults function
Gets the search results.

Function search_getresults(searchhandle As Long, resultnum As
Long) As Long

Argument

searchhandle The search handle from search or search_genrank.

resultnum The number of results.

Description

The search_getresults function is used to retrieve specific search results after calling the search
or search_genrank functions. An ordinal value specifies which result to retrieve. This ordinal
must be a value between 0 and the number of documents returned by sres_docsreturned
property minus 1. This function retrieves various document attributes, such as, relevancy value,
document date, document identifier, and document data and makes the attributes' value
available through the search results handle.

Return Value

Returns the search results.

See Also

• search

• search_close

• search_genrank

Visual Basic Reference Section

6–180

search_getterms function
Retrieves matching search terms from the query.

Function search_getterms(searchhandle As Long, resultnum As
Long) As Long

Argument

searchhandle The search handle from search or search_genrank.

resultnum The number of results.

Description

The search_getterms function is used to retrieve the terms and term statistics for the specified
search from search or search_genrank functions.

The term to retrieve is the 0-relative result number specified in the sres_numterms property.
Call sres_terms to retrieve the term string. Use sres_termcount to determine the number of
matches of the term string.

Return Value

Returns the search terms.

See Also

• search

• search_close

• search_genrank

• sres_numterms

• sres_termcount

Visual Basic Reference Section

 6–181

setdocdatastr function
Sets the document data.

Function setdocdatastr(docData As String) As Long

Argument

docData The string containing the document data.

Description

The setdocdatastr function sets the document's data (for example, the title of the document or
other descriptive information) Call this function after analyzing the document's content and
between startdoc and enddoc functions. The data is made available by a successful search. The
maximum length of the document data string is 64,000 bytes.

Return Value

Returns 0 or an error code.

See Also

• enddoc

• startdoc

Visual Basic Reference Section

6–182

setdocdate function
Sets the document date.

Function setdocdate(year As Long, month As Long, day As Long)
As Long

Argument

year The year greater than 0100 but less than 2148.

month The month of the year from 1 to 12.

day The day of the month from 1 to 31.

Description

The setdocdate function sets the date of the document and is called between the startdoc and
enddoc functions.

The date is returned in the search results and can be retrieved by calling sres_day, sres_month,
and sres_year on the search results handle. Dates are indexed and can be used to limit searches
by adding a date range as an additional term in the boolean query string argument passed to
search.

The date and time (see setdocdatetime)can also be used to order search results. For further
information see search_genrank.

Return Value

Returns 0 or an error code.

See Also

• setdocdatetime

Visual Basic Reference Section

 6–183

setdocdatetime function
Sets the document date and time.

Function setdocdatetime(year As Long, month As Long,
day As Long, hour As Long, minute As Long, second As Long)
As Long

Argument

year The year greater than 0100 but less than 2148.

month The month of the year from 1 to 12.

day The day of the month from 1 to 31.

hour The hour from 0 to 23.

minute The minute from 0 to 59.

second The seconds from 0 to 59.

Description

The setdocdatetime function sets the date and time of the document and is called between the
startdoc and enddoc functions..

The date is returned in the search results and can be retrieved by calling sres_day, sres_month,
and sres_year on the search results handle. Dates are indexed and can be used to limit searches
by adding a date range as an additional term in the boolean query string argument passed to
search. Dates can also be used to rank search results, see search_genrank for more details.

This function provides a higher degree of precision in the date assigned to a document (to 1
second) than setdocdate.

Return Value

Returns 0 or an error code.

See Also

• setdocdate

Visual Basic Reference Section

6–184

setrankval function
Adds a ranking value to the document.

Function setrankval(type_name As String, value As Long) As Long

Argument

type_name Name of the value type to be added.

Value Integer value for the type.

Description

The setrankval function adds a numeric value to a document index that can be used for ranking.
A given value type should be used at most once in a document. To use the value as a ranking
term in a search, see the search_genrank function

Return Value

Returns 0 or an error code.

See Also

• addvalue

• define_valtype

Visual Basic Reference Section

 6–185

sopt_doclimit property
Sets the maximum number of documents to return from a search.

Property sopt_doclimit As Long

Description

The sopt_doclimit property is a write-only property which limits the number of documents that
can be returned in a search or search_genrank result. The default value for the maximum
number of documents returned is 32,000.

Return Value

Returns nothing.

See Also

• sopt_rank_to_boolean

• sres_docdata

• sres_docid

Visual Basic Reference Section

6–186

sopt_rank_to_boolean property
Sets the rank to boolean option.

Property sopt_rank_to_boolean As Integer

Description

The sopt_rank_to_boolean property when the value is non-zero directs the subsequent call to
the search method to limit the search to documents which match the Boolean expression and
have at least one of the ranking terms. By default, this call is enabled. Typically, this property
reduces the number of documents found.

Return Value

Returns nothing.

See Also

• sopt_doclimit

Visual Basic Reference Section

 6–187

sres_day property
Returns the day of the document date.

Property sres_day(searchhandle As Long) As Integer
read-only

Argument

searchhandle Search handle for search or search_genrank.

Description

The sres_day function retrieves the day of the year value of a document's date. Call this
function after calling search_getresults.

Return Value

Returns the day of the year value.

See Also

• sres_month

• sres_year

Visual Basic Reference Section

6–188

sres_docdata property
Retrieves the document data string from the search results.

Property sres_docdata(searchhandle As Long) As String
read-only

Argument

Searchhandle The search handle from search or search_genrank

Description

The sres_docdata property retrieves the document data string from the search results.

Return Value

Returns the document data string.

See Also

• search_getresults

• sres_docid

Visual Basic Reference Section

 6–189

sres_docid property
Retrieves the document identifier.

Property sres_docid(searchhandle As Long) As String
read-only

Argument

searchhandle The search handle from search or search_genrank.

Description

The sres_docid property retrieves the document identifier from the search result.

Return Value

Returns the document indentifier string.

See Also

• sres_docdata

• sopt_doclimit

Visual Basic Reference Section

6–190

sres_docsfound property
Retrieves the number of documents found from a search.

Property sres_docsfound(searchhandle As Long) As Long
read-only

Argument

searchhandle The search handle from search or search_genrank.

Description

The sres_docsfound property retrieves the number of documents found after a search.

Return Value

Returns the number of documents found.

See Also

• sres_docsreturned

Visual Basic Reference Section

 6–191

sres_docsreturned property
Retrieves the number of documents returned.

Property sres_docsreturned(searchhandle As Long) As Long
read-only

Argument

searchhandle The search handle from search or search_genrank.

Description

The sres_docsreturned property retrieves the number of documents returned from a search.

Return Value

Returns the number of documents returned.

See Also

• sopt_doclimit

• sres_docsfound

Visual Basic Reference Section

6–192

sres_month property
Returns the month of the year associated with the document.

Property sres_month(searchhandle As Long) As Integer
read-only

Argument

searchhandle Search handle from search or search_genrank.

Description

The sres_month function retrieves the month of the year value of a document's date. Call this
function after calling search_getresults.

Return Value

Returns the month of the year value.

See Also

• search_getresults

• sres_day

• sres_year

Visual Basic Reference Section

 6–193

sres_numterms property
Returns the number of matching terms from a search.

Property sres_numterms(searchhandle As Long) As Long
read-only

Argument

searchhandle The search handle from a search.

Description

The sres_numterms property returns the number of matching terms found from a search. Call
this property after a call to search. Note: This property is not valid for search_genrank.

Return Value

Returns the number of matching terms.

See Also

• search_close

• sres_term

• sres_termcount

Visual Basic Reference Section

6–194

sres_relevance property
Returns the relevance value of search result.

Property sres_relevance(searchhandle As Long) As Single
read-only

Argument

searchhandle The search handle from search or search_genrank.

Description

The sres_relevance property retrieves the relevancy value of a document returned with
search_getresults.

Return Value

Returns the relevancy value.

See Also

• search_getresults

Visual Basic Reference Section

 6–195

sres_searchversion property
Returns the version string of the current search.

Property sres_searchversion(searchhandle As Long) As String
read-only

Argument

searchhandle Required. Always the Err object.

Description

The sres_searchversion property retrieves the version number of the current search. This
version number can be stored for later use in the SearchSince argument of the search and
search_genrank functions.

Return Value

Returns a version string.

See Also

• search_close

• search_genrank

Visual Basic Reference Section

6–196

sres_term property
Returns the nth matching term from the query.

Property sres_term(searchhandle As Long) As String
read-only

Argument

searchhandle Search handle from a search.

Description

The sres_term property retrieves the nth matching term of the query.

Return Value

Returns a string.

See Also

• search_close

• search_genrank

Visual Basic Reference Section

 6–197

sres_termcount property
Returns the term count of the nth matching term.

Property sres_termcount(searchhandle As Long) As Long
read-only

Argument

searchhandle The search handle from search or search_genrank.

Description

The sres_termcount property retrieves the number of matches of the nth matching term. This
property should be used after a call to search, and in conjunction with search_getterms and
sres_term to retrieve the terms and term counts.

Return Value

Returns the term count of the nth matching term.

See Also

• search_getterms

• sres_docsfound

• sres_docsreturned

• sres_term

Visual Basic Reference Section

6–198

sres_year property
Returns the year value of the document date.

Property sres_year(searchhandle As Long) As Integer
read-only

Argument

searchhandle The search handle from search or search_genrank.

Description

The sres_year property retrieves the year value of a document's date. Call this function after
calling sres_getsearchresults.

Return Value

Returns the year value.

See Also

• search_getterms

• sres_docsfound

• sres_day

• sres_docsreturned

• sres_month

• sres_term

Visual Basic Reference Section

 6–199

startdoc function
Adds a document to the index.

Function startdoc(docid As String, flags As Long) As Long

Argument

docid String that names the document (limited to 120 bytes).

Flags Sets the conditions for creating a new document. The conditions can have the
following flags:

0 Does not matter whether the document already exists. If it does not
exist, create it. If it does exist, replace it.

1 New document. The docid must not already exist.

2 Replace an existing document.

4 Duplicate document IDs are allowed. If a document with the same ID
already exists, another one can also be created.

Description

The startdoc function creates a new document in the index. This function must be used with a
call to enddoc to bracket the beginning and end of the document to be added to the index.

The first location available in the index for the document is returned through a call to
startdoc_startloc property. Use this in the first call to the addword function or similar kinds on
functions. When you are finished adding document contents, call the enddoc function to
terminate the document.

Return Value

Returns 0 or an error code.

See Also

• adddate

• addfield

• addliteral

• addvalue

• addword

• addword

• enddoc

• setdocdatastr

• setdocdate

• setrankval

Visual Basic Reference Section

6–200

startdoc_startloc property
Returns the starting location of the document in the index.

Property startdoc_startloc As Long
read-only

Description

The startdoc_startloc property returns the starting location of the document in the index. This
property is used in conjunction with startdoc and addword.

Return Value

Returns the starting location of the document.

See Also

• addword

• search_getresults

• sres_day

• sres_month

• startdoc

Visual Basic Reference Section

 6–201

AVSIndex Constants

Constants are meaningful names that take the place of a numbers or strings, and remain fixed.
The following are constants or global variables for the AVSIndex Class:

Constant Description

avs_adddoc_io_err I/O error in ni2_index_adddoclist

avs_badargs_err Invalid arguments (for example, null pointer)

avs_compact_io_err I/O error in ni2_index_compact

avs_counts_err Counts object has no counts context (VB, C++ API)

avs_cvt_err Document converter error

avs_cvt_unsuptype Unsupported document type conversion.

avs_date_err Date out of range

avs_doc_exists Document already exists

avs_doc_limit_err <= 0 documents specified

avs_doc_notfound Document not found (locate)

avs_docdata_err Document data too long

avs_docid_err Document identification too long

avs_doclist_err Error creating doclist

avs_field_err Field processing error

avs_fileio_err Converter: file I/O error

avs_filter_err Filter error

avs_getdata_err Could not get data (ni2_index_getdata)

avs_index_err Index object has no context (VB, C++ API)

avs_license_expired Evaluation or beta license expired

avs_lock_err Cannot acquire index locks

avs_malloc_err Cannot allocate memory

avs_mkstable_io_err I/O error in ni2_index_makestable

avs_mkvis_io_err I/O error in ni2_index_makevisible

avs_nametoolong_err Value type name too long

Visual Basic Reference Section

6–202

Constant Description

avs_nomore_words No more words to return from counts

avs_ok Success

avs_open_err Cannot open or create an index

avs_outofrange_err Value out of range

avs_parse_err Trouble parsing query

avs_rankterm_err Unknown ranking term

avs_resultnum_err Invalid result number specified

avs_search_err Search object has no search context (VB,C++ api)

avs_startdoc_err Startdoc/enddoc sequence error

avs_sync_err Error synchronizing the read lock

avs_unk_exception_err Unhandled exception error (C++ api)

avs_update_err Index not open for update

avs_version_err Caller/library version mismatch

Document Conversion API
A new document converter API that converts various document types to text is now available
with this release. This API embodies document conversion technologies from Inso Corporation,
Adobe Systems Inc., and Compaq Computer Corporation. Currently, conversion to HTML is
only supported for PDF documents.

Visual Basic Reference Section

 6–203

Class AvsDocument

The AvsDocument object the contains document converter methods and properties.

Visual Basic Reference Section

6–204

convert_file2html function
Converts a document to HTML.

Function convert_file2html(DocPath As String, TextPath As
String) As Long

Argument

DocPath The path of the document to be converted.

TextPath The path of the converted text document.

Description

The convert_file2html function converts the specified file to an HTML file. You must supply
the path of the file to be converted and the path of the output file. Currently, only PDF files can
be converted to HTML.

Return Value

Returns 0 or an error code.

See Also

• convert_file2text

• cvterrmsg

Visual Basic Reference Section

 6–205

convert_file2text function
Converts a document to text.

Function convert_file2text(DocPath As String, TextPath As
String) As Long

Argument

DocPath The path of the document to be converted.

TextPath The path of the converted text document.

Description

The convert_file2text function converts a document to text. You must specify the pathname to
the document to be converted as well as specify a pathname to the file which is to contain the
converted text. The document contents are analyzed before conversion to determine the
document type.

Note: The file containing the converted text may contain no line ending characters. For more
information on the file types available for conversion, see the File Types Table in the C
Reference Manual.

Return Value

Returns 0 or an error code.

See Also

• convert_file2html

• cvterrmsg

Visual Basic Reference Section

6–206

cvterrmsg function
Converts the document converter status code to a string.

Function cvterrmsg(status As Long) As String

Argument

status The error status code from the document object.

Description

The cvterrmsg function converts the document converter status code to a string. Use the
lastcvterr method to obtain the status code.

Return Value

Returns 0 or an error code.

See Also

• convert_file2text

• convert_file2html

• errmsg

• lastcvterr

Visual Basic Reference Section

 6–207

errmsg function
Converts error status code to string.

Function errmsg(status As Long) As String

Argument

status The error status code from the document object.

Description

The errmsg function converts the AVS error status code to a string. Use the lasterror method to
obtain the status code.

Return Value

Returns 0 or an error code.

See Also

• convert_file2text

• convert_file2html

• cvterrmsg

Visual Basic Reference Section

6–208

lastcvterr property
Gets last document converter error.

Property lastcvterror As Long read-only

Description

The lastcvterror property retrieves the last document converter error. Use this property to get
specific document converter error code if any of the document converter methods returns
status=avs_cvterr.

Return Value

Returns 0 or an error code.

See Also

• cvterrmsg

• errmsg

• lasterror

Visual Basic Reference Section

 6–209

lasterror property
Gets the last error code.

Property lasterror As Long
read-only

Description

The lasterror property retrieves the last error status code. Use this property to get the specific
AVS error code if any of the document converter methods fails. This is useful when using the
Visual Basic On Error statement.

Return Value

Returns 0 or an error code.

See Also

• cvterrmsg

• errmsg

• lastcvterr

Visual Basic Reference Section

6–210

opt_cvtpath property
Sets the document converter input pathname.

Property opt_cvtpath As String
read-only

Description

The opt_cvtpath property sets the document converter input pathname. The dictionary file,
which is used by the PostScript filter, must exist in this directory.

Return Value

Returns 0 or an error code.

See Also

• cvterrmsg

• errmsg

• lastcvterr

Visual Basic Reference Section

 6–211

AVSDocument Constants

Constant Description

avs_cvter Document converter error.

avs_dictionary_err Unable to open postscript dictionary file.

avs_ok Indicates success.

