AltaVista Search Intranet

Developer's Kit

April 1999

This manual isacompilation of the HTML files for the product in book format.

Revision/Update Information: Verson 2.6

COPYRIGHT INFORMATION

The information in this document is subject to change without notice
and should not be construed as a commitment by Compaq Computer
Corporation. Compaq Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license. Restricted Rights: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph
(©) () (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013.

AltaVista, DIGITAL UNIX, Compagq Tru64 UNIX, and Alpha are trademarks of
Compag Computer Corporation.

Microsoft, Windows, and Windows NT are registered trademarks of
Microsoft Corporation.

Intel is a registered trademark of Intel Corporation.

Sun, Java, and Solaris are registered trademarks of Sun Microsystems,
Inc.

UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd. UNIX and
XWindow System are registered trademarks of X/Open Company Ltd.

All other trademarks and service marks are the property of their
respective companies.

(c) Digital Equipment Corporation 1999. All Rights Reserved.

Contents

PRODUCT OVERVIEW ...ttt ettt sttt at et e s bt e e b e e e aaee e sabe e eabe e e be e e sbeeesabeesnbeeebeeesnneas 1
RE QUIREM EN T S, sttt tiiiteette e e e e e ettt s e e e e ettt bt e ees s e e e s b e seess e e e bbb s eeas e e e s b b s eees s e e s b baa s e esssee s bbb eeessens bbb saeaaaes 1
(0001 1 0] =N TP TP OUPPTROPPRPN 2
NEW FEATURESIN VERSION 2.6.......eeiiiitieieiittiee ettt e e sttt e e s sab e e e sttt e e s aabbe e e s asbeeaeasbe e e e aabeeeesanbeeaeanbeeeeannreaesannes 3
GENERAL INDEXING PROCESS......cciittiiititiee ettt ettt ettt ettt e ettt e e skt e e s s bee e e s aabe e e e s bbe e e e anbbe e e e snbeeeesanreeananns 4

INDEXING, SEARCHING, AND CONVERTINGcootte ittt ettt sane e 7
CREATING THE INDEX ..ttt tttt ettt ettt ettt ettt ettt e ettt e e e sttt e e s st e e a2 e bt e e e e e ket a2 e aab e e e e asbe e e e annbeeeesnbeeeesanrenanann 7

The INAEXING MEINOMooeiee ettt ettt eb e e sbe e e sab e e s abe e e be e e eaee e snbeesabeeenees 7
LT = L =AY o o PSR R 7
The IMPOrtaNCE Of LOCALIONS.......cocueiiiuiieiiee ittt ettt ettt ettt be e st e e sbe e e sbee e sabe e sabeeebeeeebseesabeesabeeentes 8
Tracking the Location Of the DOCUMENLS..........ccoiiiiiiieiiee ettt ettt sbe et e et e saee e sabe e saneeeees 8
STEPSTO INDEXINGttt eetutteteautteaeaauteeasatseeaaauteeaesauseeaeasseeeeaabeeeeaasbeeaeasbe e e e aasee e e e ambeeeeanbeeeeanbbeeesanbeeeesannnnananns 9
Differences Between avs newdoC and avs StartdOC.........cocveeeiiiuiiieiiiiee e ctree et sree e srre e e s enrae e 10
Adding New Documents EffiCIENLIY.........ooiii et 10
CREATING A FILTER PROCEDUREutiiiititie ittt e e attee e sttt e e sttt e e s s bee e e s aabee e e s bbe e e e aabee e e s anbeeeeaabbeeesansseeasanreeananns 11
EXAMPLES OF INDEXING TECHNIQUEScciiittttiiiiieeiiettitiiseesssessssaasesssseestssaassessssessbasassesssesstssanssesseesssannssns 12
Defining Searchable NUMENTC ValUES.........oc.ei it saee s 12
Defining Your OWNn RANKING VAIUBScooiuiiiiieie ettt b e snee s 13
DefinNing MUITIPIE VBIUESeie ettt ettt e bt sbe e e sabe e be e e be e e snee s 14
18 g Tolele (=3 U] o] o S SRR 15
Handling HTML and SGML SpeCial CharaCterS.........c.ciaieiaiiieiieeeiee ettt et st e st e saeeeseee s 15
INdeXing DOCUMENES WITN DIALEScoiuiieiieeiiii ettt ettt ettt et e e sbe e saee e sabe e sbe e e nbeeesaneesnbeeas 15
Multiple Dates Associated WIth & DOCUMENT............oiiiiiiiiie ettt seae e et eesbee e saee s 16
SEARCHING THE INDEX .. .tttteitttteeettee e ettt e e sttt e e s sttt e e s aube e e e s sbe e e e aabee e e s s be e e e e asbe e e e aabee e e e ambeeeeaanbeeesannneeasanrenanann 16
Understanding REIVANCE RANKING..........uiitiieiiieiee ettt ettt e saae e sebe e sbe e e beeesnee s 16
SIMPIE QUETY SYNMEBXeeiteietee ettt ettt ettt ra ettt e e s bt e e be e e abee e ehee e saee e sabe e e be e e abeeeeaeeesmbeesmbeesnbeeeabeeesnnens 17
BOOI AN QUETNY SYNEAX. .. teeeteeeitteesitee et stee sttt e e s bt e e be e e saee e sabe e e abe e e bee e abee e sabeesabeeebeeeabaeesmbeesnbeeabeeesnneas 17
RUIES TOI QUEIY PrOCESSING. ... eietteeiiteeitee ettt ette et e bt e e s tee e saee e s be e e be e e bee e ebee e sabeesabeeabeeeabeeeanbeesnbeeaabeeesneeas 17
BasiC SEPST0 SEarCh the INOEX.......c.eeiiiiieee et sbee et b e be e snee s 18
HOW RESUITS AFE OFTEI O ...ttt ettt ettt bt bt e s e e e st e e e be e e ebae e sabe e smbeeebeeesnneas 19
Searching fOr NUMEIIC VAIUBS.........c.uii ittt ettt et sae e et e st e e s be e e naae e snee s 19
S T T alo (o = T o SRR 20
Searching for LIteral ENFIES.io ittt ettt b e sa et e abe e be e ebee e snee s 20
SearChing WIth WAIACAIAS ...ttt sa et e b e e naee e snee s 20
Searching and RanKiNg WIth DALES...........coiiiiiiieii ettt e b e saee e snee s 20
RANKING SEAICH RESUITS......ceiieie ittt ettt b et sh e e e sa b e e st e e e be e e ebee e sabe e sabeeebaeesneeas 21
FIltering SEarCh RESUITS. ...ttt sae e et e st e s be e e snee s 21
INCrEMENTAl SEAICNINGee ettt ettt ettt s e e et e e e be e e abee e sate e sabeesabeeeabeeesaneesnbeaa 21
ProXimity SBArChINGc.oiii ettt h e a e et e e e b et ehee e eabe e s b e e bee e nnee s 22
Query Processing TiMEOUL SUPPOITccuueiitereitiee it e eiteerteeeteeestee e stee e ssbeessbeesbeeasbeessaeeesaseesabesabeeasaeeesseens 22
CONVERTING DOCUMENTS FOR INDEXING. ... uttttaesutteeesaureeasaauteeasasseaesauseeasaasseassasseassasseesssassesessnssesesansenesans 22
USING THE ALTAVISTA SEARCH INTRANET COMPATIBILITY APl ...oiiiiiie e 23

Contents

ADVANCED CONCEPTSAND TECHNIQUES........ccii ettt stee et et e e s sarae e s nnraea e anes 25
MANAGING A GROWING INDEXcciieieieiee et e e e e e e e e e e 25
OPLIMIZING FOr SDEEA. ...ttt ettt ettt e ettt s h et e s s be e s be e e abee e eaeeesnbeeenbeesbeeesbeeesnbean 26
PROGRAMMING IMODELS ... oo 26
Using the Multi-Threaded MOEL...........cc.oo it b e 26
Using the Multiple ProCeSS MOOEcoiiiiiiieie ettt sb e e 26
TUNING COMPAQ TRUB4 UNIX FOR LARGE INDEXES.....uuuiiiiiiiiietiiiiiiieeeiieiiiiinsseessssssssissessssssssssnssessssssssnnnnns 27
INCREASING VIRTUAL MEMORY FOR PROCESSES......uuuuuuuuu s aanan 27
Modifying the VIMFMAapeNntrieS At TDULE.oo it 27
Modifying the ubc-maxperCent AUTIDULE.ooeii e 28
How THE PUBLIC ALTAVISTA SEARCH SITE SETSTHE VIRTUAL MEMORY ATTRIBUTEScceeeeeeeeeeeeeeeeeeene. 28
INDEXING WITH DATABASE APPLICATIONS. .. uuuuuuuuuuiuunnnnnnnnnannnannanannnann 29
CUSTOMIZING YOUR INDEX WITH THE DEVELOPER'SKIT ..ccoiiiiiiiieeeeeeeeeeeeeee 30
Initializing the avs_parameter Sructure INThe C APoo i 31
Modifying the ParametersSin the C AP ...ttt b e 32
OPENING TN TNOEX. ...t ettt ettt ettt ettt e ettt e e bt e e s hbe e s abe e e be e e be e e saeeesnbeesnbeeeabeeesbeeesnbean 32
USING THE SAMPLE PROGRAMSttt ettt e e e s et a e e e e e e e e saab b e e e e e e e e s enarraeeas 33
UNDERSTANDING THE C SAMPLE PROGRAMcciiiiiie e, 34
What the SAmple Program DOES. ittt sttt sae e sabe e st e e s be e nbee e saneas 34
CrEaLING AN TNOEX ...ttt ettt ettt a e e bt e ettt e ebe e e ehbe e s abe e sabe e e abeeeeabeesmbeesnbeeebeeeaneeesnbean 35
SAICHING AN TNOEX ...ttt ettt e bt e e s hee e s abe e e be e e abee e saeeesmbeesabeeebeeesaneesnbean 35
Performing a Boolean Search With RaNKiNG TEIMIS.........ciiiiiiiieeiiee et 36
Restricting Advanced SearcheS DY Date..........ooiuiiiiiiiiii e 36
Performing a Multi-Threaded SEarCh............eoo i 37
Counting Word OCCUrreNnCeS iN YOUP TNOEXccocveiiiueiaieeiiieaieeestee ettt e st sbee e saee e be e sbe e sbe e s saeeesnneaans 37
Deleting a Document fromM the TNOEXoieie ettt sb e saee e sabe e b e e 37
COMPACTING AN TNOEX ...ttt ettt e ettt e sbe e e s aee e sabe e s be e e abee e sabeesmbeesabeeebeeesaneesnbean 37
COMPILING AND LINKING THE C SAMPLE PROGRAMcciiiiiiiieeeeeeee e 38
COMPILING ON A COMPAQ TRUBZ UNIX SYSTEM uuuiiiiiiiiiiiiiii ettt e et s s e s s sesbba s s e s s e esbba s e e s seenaaes 39
COMPILING ON MICROSOFT WINDOWS NT ..o 39
COMPILING ON SOLARISAND LINUX SYSTEMS......cciiiiiieieeeeeeeeeeeeeeeee e, 39
COMPILING ON ALIX SYSTEMS.....ccoiiiiieeeeee e 39
COMPILING AND LINKING WITH DOCUMENT CONVERTERS.......cciiiiiiieieeeeeeeeeee et aa e e 40
USING THE DOCUMENT CONVERSION TEST PROGRAMccoiiiiiiieeeeee e, 40
UNDERSTANDING THE DATABASE EXAMPLE.ccc i i, 40
CrEatiNg the TNOEXcoo ittt ettt ettt h bt e s be e s be e e ebe e e sabeesmbeesabeeebeeesaeeesnbeans 40
SArChING ThE TNAEX ...ttt b et e s ab e e s abe e s be e e be e e saeeesabeens 41
Retrieving Data fromthe Databasecooiei it 41
DElELiNG 8 DOCUMENLcuteieitiieiiee ettt ettt ettt et e e sbe e sae e e s abe e s be e e be e e ebee e sabeesabeeaabeeeabeeesabeesmbeesnbeeenees 41
Synchronizing the Index With the Database............oooeiiiiii e 41
SAMPLE JAVA APPLICATION ...coiiiiiiiiieeeee et 42
T CL SAMPLE APPLICATION ..uutttttuutttsssnnns 42
VISUAL BASIC SAMPLE APPLICATION ..uuuuuiiiiieieeeeaeeeaeeaeaseae e e ae s e s s e e s e s s s a s nnnnnnnnnnnnnnnnnnnnnnn 42
ALTAVISTA SEARCH INTRANET COMPATIBILITY APl SAMPLE ...uuuniiccccece e 42
C PROGRAMMER'SREFERENCEco oottt ettt e e e e e st re e e e e e e e s eabbaaeeeaeeesnnnnes 45
CONENLS... . 45
AVS ADDDATE 1t iiutttttettee et setttte et ee e s s s s e bt ee et aaeessaa s b b eeee e e e e s aaa e e e e eeeee e e e e R e b eee et ee e e e e hEEe et e ee e e e annbraeeeaeeenaanrraeaaaaeen 46
F TSR Nom = o FEEOPERPR PR 47
AV'S ADDLITERAL ©.utttttttteeeiiitttteeesesssisstsssesaessssassssasesaesssaassssasesaassssassssseesassssssssssseseesssansssneesassssnnssssnseesesnns 48
AVS ADD _MS CALLBACK ..itiuttttttttee e i iitttteestaesssasstbaeesaeessaassstaeeeeaessaassbteeeeaaesssassbbeeeeaeeesaasbbaeeeaeessassbrneeeaannas 49
AVS ADDVALUEuuttttetieeesistttteteeas st ssattteeeaaesssasssbaeeaaaeassassteeeeeaaessaasseeeeeeaaeessass e aeeeaaeeesansbbaeeeaeeesanstrneeeaeenan 50

Product Overview

AV'S ADDWORDutetetttauteaauteaaateeaateeasueeaaateasabeeabeeeaseeeaaseesabeeeabee e bee e ahee e eREeeaabe e oA beeebee e ahee e eaEeeeabeeebeeearaeeaaneas
AV'S BUILDMODEciittteuteaauteaateaaateeasuteaauteasaseeaaseeaaseeeaaseesabeeaaseeaabeeaaseeaaabeeaabeeaabeeaabeeeaaeeesmbeesabeesnbeeeabaeesnneas
AVS BUILDMODE_EX
AAV'S CLOSE ..ttiutttetee e sttt aauteesabeeabee e abee e sabe e aabeeaabe e e be e e ab e e e oabe e oabe e oa b et e be e e b ee e oREe e embe e eabe e e be e e ehee e eabeeeabeeebeeeeraeeanneas
AAV'S COMPACT ..ttt ettt esueeesuteaauteaaateaaabeeeaaeeasabeasabee e beeeasee e aaeeesabeeoabee oo be e e b ee e oabeeambeeaabeeeabee e ehee e aabeesabeeanbeeenbneeanneas
AVS_COMPACTIONNEEDED
AVS _COMPACT_MINOR.........
AVS _CONVERT_FILE2HTML
AVS _CONVERT_FILE2TEXT
AVS CONVERT_INIT Lutteiuteeauteaateaaateeesuteesuteasaseeaseaaaseeeaaeeesabeeaaseeaabeeeaaeeeeabeeaabeeaabeeeabeeeaaeeesmbeesabeeanbeeeabaeesnneas
AAV'S COUNT Letttt ettt e auteeeuteeasteeabeeeabeeesateeaabeeaabeeaabe e e b e e e oaee e oabe e oabe e oo be e e b ee e 1R be e 4mbeeeabe e e abe e e ehee e embeesmbeesnbeeeabaeeanneas
AV'S COUNT _CLOSE .. utteuteasuteaatesaatetasueeasuseassseeaseeaasseaaasessasesaaseeaabeeaaaeeaaaseesabeesabeeabeeeaaeeesabeesabeesnbeeeasaeesaneas
AVS COUNT_GETCOUNT «..ttteuteaateteatetesuteeauteassteaaseeaasseeaaseesabeaaabeeabeeeaaeeeeabeesabeesabeeabeeeaheeesabeesabeeanbeeeasaeesnneas
AVS_COUNTNEXT .
AVS COUNT_GETWORDuteeuteeautesastesasueeasuteasssesaasesaassesaasessasessasesaasesaassessasessasesssessasesssssessnsessnsessnsessasesssees
AVS CVTERRMSG ...tetetteeuteaauteaateeaateeasueeasateasabeeaseeaaseeesaseesabeeaabeeabe e e aaee e eabeeaabeeeabeeeabeeeaheeesabeesabeeanbeeenraeesnneas
AVS CVUTERRMSG_COPY ...utiiiutitatetaatetasuteasuteaaatesaasesaasseaaasessasesaasesssesaaseesasseasabessabeeaabeeeaseeasaseesabessseeeasaessnneas
AVS DEFAULT_OPTIONSttttutetatetaatetesueeasuteassseeaaseeaaseeeaaseasateaaaseeaabesaaaeeaaaseasabeesbesabeeeaaseesaseesabessbeesasaessnneas
AVS DEFINE_VALTY PE .oiuttiiutitateeaateeesuteeauteassteeaseeaaseeeaaseesabeaaabeeabeeaaaeeaeaseesabeeaabeeabeeeaaeeesabeesabeeanbeeeasaeesnneas
AVS DEFINE_VALTYPE _MULTIPLE ..uuutttttttteesiiestteteseessssssstssesssesssasssssssessssssssssssssssessssansssssesssssssnssssssesessssanses 74
AVS DELETEDOCID.... .
AAV'S ENDDOC ..ttt euteeesuteesuteasuteaateeaaseeasueeasateasabeeaabeeeaseeeaaseesabeeeabe e e be e e b ee e eaeeeoabeeeabeeeabe e e ahee e aabeesabeeenbeeeanneeaaneas
AV'S ERRMSG 1.ttt euteeeiteeasuteasuteaateeaateeesaeeasabeaaabeeaabeeeabeeeoaeeesabeeoabe e oo be e e b ee e oabe e oabe e e beeeabee e ahee e eabeesabeeenbeeearneeanneas
AVS ERRMSG_COPY ...uutieuteaiutetatetaatesasueeasuteaassesaasesaasseaaaseesateaaaseeaabesaaseeasaseesabeeaabeeabeeeaaeeesabeesabeeabeeeasaeaanneas
AVS_GETINDEXMODE
AVS GETINDEXVERSION ...uutttttttteessiaustsseessesssissssssessssssansssssssssssssanssssssssesssamssssseseesssnnssssseeseeesnnmsmseeeseeennnnne 8l
AVS GETINDEXVERSION _COUNTS V .utttttttieesiiitttseessessssssstsseesessssassssssessssssamsssssesessssnmsssssessessssnmsssseesessssnnnes 82
AVS GETINDEXVERSION _SEARCH V ..utttittieeiiiittitetesassssssstsseesessssassssssssssesssasssssssessssssnssssssesssssssnssssssesasessnnnes 83
AVS GETSEARCHRESULTS. .. uttteuteteatetasuteasuteasstesaasesaasseaaaseasaseaaasesaasesaasesaasseasabessabeeabeeeabeeesmbeesabesabeeensaesanneas
AVS GETSEARCHTERMS.....tetutttatetaatetesuteaauteaasteeaaseeaasseeaaseasabeaaaseeaabesaaseeaaaseesabeeaabeeabeeeaaeeesabeesabeaanbeeeasaeeanneas
AVS GETSEARCHVERSIONuttiitttaitetesuteasuteaatesaateeaasseeauseesasesaasesaasesaaseeaasseasabessabesaaseeeaseeesasessasessaseeaasaessneens
AVS LOOKUP_VALTYFE... .
AVS IMAKESTABLE ...tttetteeateaaateeaateeesuteasateasabeeabeeaaseeeaateesabeeaabee e be e e ahee e aabeeambe e e abeeebee e ahee e ambeesabesanbeeenbaeeanneas
AV'S NEWDOC ...ttt euteeeueeeauteaautesateeaaseeasueeasaseasaseeabeeaaseeeaaseeaabeeaabe e e be e e s ee e eabe e oa ke e eabeeeabee e ehee e ambeesmbeeanbeeeabaeeanneas
YNV ST @ = = N PP OTRRT
AVS QUERYMODE
AVS RELEASE VALTYPES. . etutttetetaatetesuttasuteaateeaaseeaasseaaaseesasesaasesaasesaaseeaaaseesabessabeeaabeeeaseeesaseesasessbeeeasaessnnens
AAV'S SEARCH. ¢ttt etee ettt e eutee e beeebee e abeeesaee e sabeeaabe e e be e e abee e oabe e sabe e oa b e e e be e e R et e oA Ee e oA Ee e oA Ee e e be e e eRee e enbeeeabeeebeeeaaaeeaaeeas
AVS SEARCH_CLOSE ...utteuteeiuteaatetaatetasueeasuteasstesaaseeaasseesaseesabeaaaseeabeeaaaeeeaabeesabeesabeeabeeeabeeeaabeesabeeanbeeeabaeeanneas
AVS SEARCH_ EX c.uttteiuttaiuteaateaateaaateeesuteasateasabeeaseeaabee e saeeesabeeoabee e be e e b ee e oabe e oabe e eabeeeabe e e ehee e embeesabeeenbeeeabaeeaaneas
AVS SEARCH_GENRANKtetutteetet ettt esuteasuteasateeaabeeaaseeeaaseesabeaaabeeabeeaaseeeeabeesabeeaabeeebeeeaaeeesmbeesabeeanbeeenbaeeaaneas
AVS SEARCH_GETDATA ...utiiiutiaateeaateteauteasuteasateaabeaaaseeaasseeaateasabeeaabeeaabeeeaaeeeaabeeaabeeaabeeebeeeaaeeeambeasabeesnbeeantes
AVS _SEARCH_GETDATA_COPY .
AVS SEARCH _GETDATALEN ...ttt ttttettteatteesuteesateeabeaaaseeaasteesateaaabeaaabeeaabeeeaaeeesabeeambeeaabeeebeeeaaeeesabeasabeesnbeeanses

AVS SEARCH _GETDATE 1. .utteuteeautetasteeeatteasuteasateassesaaseeaasseeaaseaaabesaaseeaabeeeaaeeesabeeaabeesabeeebeeeaaeeesnbeesabeasnseeanses

AVS _SEARCH_GETDOCID ...ttauteeeutetateeeaueeasuseasusesssesaasesaassesasseasasessasesaasssaasssssssessnsessnsessasessssseesnsessasessnsesanses
AVS SEARCH_GETDOCID_COPY .iiiiiiiiutttttetsaessiasstssessasssssssstssessssssssasssssssssssssmsssssessesssanmssssseesesesinmssssesseenns 105
AVS SEARCH_GETDOCIDLEN .11ttiitiiiiiutttttetsasssiasttssessasssssssssssessassssssssssssssassssasssssssessessssnmsssssessessssnsssssessessnn 106
AVS SEARCH _GETRELEVANCEeciiiiuttttttttaessiasttttessasssssasstssessasessassssseeesaeessaasstsseesaessssssssenesaessssnsssssnensanssn 107
AVS SETDOCDATA
AV'S SETDOCDATE ..ttt tuteeauteaateeaateeaaueeasateasateaaabeeaaseeaaaseeaabeeaabeeeabeeabee e eaee e eabeesmbeeambeeeabee e aaeeesabeesmbeasnbeeantes
AVS SETDOCDATETIME ..iuutttttttiesesiitttttessassssasssssesaaasssaasstseeesaeessaasstseeeeaeessaassteseeeaaessaassseeeeaessssassssnenaanesan 110
AVS SETPARSEFLAGS ...t iuttttttttesesistttetestaesssasstasesaaeessasstbeeeaaaessaass e seeeeaeeesaass s eeeeeaaessaassbbeeeeaeeessanssbenenaaensan 111
AVS SETRANKVAL

Contents

AV'S STARTDOC ... uutttttetteesiasstreeesaesssaasteseeaasessaasstsaeteassssaasstesessaesssnsssseesaasssanssseseseessssassssenesessssansssneesaenns 113
AVS TIMER ..ttt ittteetteeatee e bt e e atee e sateesabe e s be e et et e ah et e oate e oabe e e abe e e b e a2 b ee e oabe e eabe e eab e e e b ee e ehee e aabeeambeeanbeeeabeeeanbeesnrean

AVS VERSION
AVS]_SETDOCDATA L.eiiititatetaatetesuteaauteaabeaaabetaaseeaaaeeasabeaaabeeabeeaabeeesabeeaabeeaabee e b eeeeheeeambeesabeaanbeeaabeeesnbeesnreann
AV S| GETDOCDATA ..ttt ettt aateeaauteasuteaaateaaabesaaseeaaaeeasabeeaabeeabeeeaseeeaabeeeabeeaabeeaabeeeabeeeembeesmbeeanbeeaabeeesnseesnseans
AVS] _URLZDOCID ..uutttttetteessaaustteeesaesssaasssssessssssaasssssessassssassssssesssssssnsssssessessssnssssssseesssnnssseeeseeesnnmsrsseeeennn
AVSI_CONVERT_TO UTF8....
AVS|I_CONVERT_FROM_UTF8

AVSI_CONVERT_CIKQUERYuutiiieitteeesiuteeeesauteeasssseeesassesssaassesassssssessnsesessassesessnssssesassessssnssessssnssssessssesesanns

DATA STRUCTURESot e

oY S o] o 1 o SRR

o SR 0212 1< (= P TOURUURRURR

DEFAUIT VAIUEBS...... .ttt ettt e e e e et e e e e e s e e bbb e e e e e e e e saaabbaeeeeeessastbbaeeeeesesansrreeess

Index Management............ccc.......
INDEX FOR AV Sl COMPATIBILITY .uuuuuuuuuuuuuuuuunnnnnnnnnnnnnann 126
CONVERTER STRUCTURES AND PARAMETERS.......cciiiiiiieeeeeeeeeeeeeeeeee e, 127

Character SEtS YOU Can INOEX.......veeiieeiiiiitiiiie e e e ettt e e e e ettt e e e e e e s e ettt aeeeeeeessasabbaeeeeasessasbraeeesasessansres 127
AV S COMPATIBILITY STRUCTURESuuuuiiiiiiiieiieeeeaaea e e e e ase s s e s s e s s s s s e s s e e nnnnnnnnnnnnnnnnnnnnnn 127

L EEE PIOCEAUNEvvieeei ettt e e e e e ettt e e e e e e e e e eabb b e e e e eeeesasabbaeeseeessaasbbaeeeeeeesansrreeess 129

VISUAL BASIC REFERENCE SECTION ...ccioiiiiittiiite ettt eatbre e e e e e snnbbae e e e e e e s s nnnaraeee s 131

NAMING CONVENTIONS.ciiiieiieee e et e aaeaaaaaaaaaaaaaaaas 131
CLASSAVSINDEXciiiiiiieeeeeeeeee e 131
F] 07 =3 = T 1T) 132
F]) 1= I = N T 133
F) I 1 = Y = N T 134
ADDVALUE FUNCTION ... ieeeeeeeeeeeeaee s e se e e e e s e e e s s e s s s s s e s s e s s e e e e e nn 135
ADDWORD FUNGCTION ... ieeeeieeeeeeeaee e e e e s e e s s e e s s e s s s s e e e e s e e e e s nnnan 136
ADDWORD_NUMWORDS PROPERTY ...tiuutttttttssssisssttsessassssssssssessasssssssssssessesssssssssssssssssssmssssssssssssnnssssessaesns 137
AVS VERSION PROPERTY ..iiuuttttttteessisisstssesssssssassssssesssssssassssssesssssssnsssssessessssnsssssesssssssnssssseesesessnnssssessaeens 138
BUILDMODE FUNCTION 1..iiiiiiiiie i e e e e e e e et ettt eaaaaeaaaaaaaaaaaaaaaaaaaaaaas 139
CLOSE FUNCTION
COMPACT FUNCTIONciiiiiieeeee ettt ettt e aaaaaa e 141
COMPACT_MINOR FUNCTION 1111ttt iuutttttetaessssusstseessasssssssssssessasssssssssssesssssssasssssssssssssnsssssssssessssnnssssessessssnnses 142
COMPACT_MORENEEDED PROPERTY .11ttttteetiiiutttttetsesssissssssessessssmssssssessssssinssssseesssssinssmsseesesesinssmmeesseeesannne 143
COMPACTIONNEEDED FUNCTION
COUNT FUNGCTION ..etieeiiiuttteeeeeeeeiaatsseeeeeesssaasssssessasssaasssssssssasssaasssssssssesssansssssssssessssassssssessessssnssssssessessssnsses
COUNT_CLOSE FUNCTION ... utttteiiuteteesisteeessisseeesasteseesassesassassesessssssesassesessassessssnssssesanssssesasesessnssesessnssesesansens
CRES _COUNTNEXT FUNCTION ... uuttteeitteeesstteeesstaeeessssesassassesessssssesassssessassessssnssssesssssssesassssssnssesessnssseesasens
CRES _WORD PROPERTY ..cieuutttteiiuteeeesastesessastesesassassesassessssassssessnssssesasssssssassessssnssssssasssssesasesessnssesessnssesesansens
CRES_WORDCOUNT PROPERTY ...uutitieiitteeeeiitteeesatereesassesasaassesessnssssesasessssassessssnssssessnssssesasesessnssesessnssseesansens
DEFINE_VALTYPE FUNCTION .. .uutitieiittetesiteeeesatteeassasteeesassesesassesessassesessssssesassesessassesessnssssessnsessesssesessnssnees
DEFINE_VALTYPE_MULTIPLE FUNCTION ...
DELETEDOC FUNCTION .111tttteeetieitttreeeeeeesiaatstsseesasessasssssseesssssiasssssssssesssiaasssssssesssiasssssssssesssimsssrsssssessssmsssrsseees
DELETEDOC NUMDELETED .eeeiutttteeitteeesitteeesasteeasaassesesanssssesassesessassssessnssssssasessssassessssnssssessssessesasesessnssesens
ENDDOGC FUNCTION .. .uuttveeteeeesieitsrseeesesssaaasssssessesessassssssessessssasssssssssesssismssssssssesssiassssssssesssinsssrsssesessssmsssrsseees
ERRMSG FUNCTION ...uuuttveeeeeeesieittreeeeseeesaaisstsseesesessassssssessessssasssssssssesssinssssssssessssassssssssesssinssssssesesessmssrsseees
GETINDEXMODE PROPERTY ..eiiiieiiiittteteeeeesiaaissreeessesssaaissssessssssamsssssessesssamssssssssesssinmsssssessessssnsssssssssessssnsses
INDEXVERSION PROPERTYceiiiitttteeeteeesiaitstseeesesesaaisstsseesesssiamsssssssssssinassssssssssssimssssssssessssmmssssssesessssmssrsseees
IOPT_CACHE_THRESHOLD PROPERTY
IOPT_CHARS BEFORE_WILDCARD PROPERTY ..eiiiiiiiittttteetasssissstssessasssisssssssessessssnssssssesssssssnssssssesssssssnsssssseess 159
[OPT_CHARSET PROPERTY ...vtieiittteeeiotteeesitaeeesastesasaastesasinssssesassesessassesessnssssesasessssassessssnssssessssessesasesessnsseees
IOPT_ENABLE_RANKBYDATE PROPERTYtttieiitteteeitteeesiteeeesasreeessasteeessnssssssassesessassesessnssssessnssssesssesessnsssees

Vi

IOPT_ENABLE_SEARCHBYDATE PROPERTY ...

Product Overview

IOPT_ENABLE_SEARCHSINCE PROPERTY ..1ttttttitiisuttttttteessisssssseessssssnmsssseessssssmmsssseesessssnmssssseesessssnnmmsmeesseenn 163
IOPT_IGNORED_THRESHOLD PROPERTYttiiutttetetasueeasuteastesaasesasseeassseasssesssessasesssssessssesssessnsesassesessessnsessns 164
IOPT_INDEXFORMAT PROPERTY .
[OPT_NBUCKETS PROPERTY ...utttetttesuteasuteaateeaasesasuseasasesssesaasesaasssesssessnsesssessasessssssesssessnsessasesassessssessnsessns
[OPT_NTIERSPROPERTYuutttttetaauttesuteasuteaasesaasesaauesasasesssesaasesaasssassseasnsessasessasssssssessssessasessnsesassessssessnsessns
[OPT_PARSESGML PROPERTYtttetttesuteasuteaatesaasesasueaasusessasessasesaasssassseasssessasessasesssssessssessnsessasesassesssseesnsensns
IOPT_UNLIMITED_WILD_WORDS PROPERTY
LASTERROR PROPERTYctutttttetastttesuteasuteaanteesasesasuseasaseasasesasesaasssaasseasasessasessasesssssessssessnsessnsesansesessseesnsensns
MAKESTABLE FUNCTION L...uttttutttastttesuteasuteaateeaasesasuseasusessasesaasesaasseaasseasasessasessasesssssessssesssessasesansesessessnsessns
(o] =Nl = 1N (o o) N TR
RELEASE VALTYPESFUNCTION ...ttt iuteasuteaateeaateeasueeasuseasasesasesaasssasssessasesssessasessasseesssessnsessnsesassesesssessnsessns
SEARCH FUNCTION ...ttituteteatteesuteasuteaateeaaueeesaseasateesaseeaabeeaasseeaaseesabeeaabee e b ee e aabeeambeeeabeeebeeeaabeesmbeeanbeesbneernneas
SEARCH_CLOSE FUNCTION ...ettetteesuteaateeaaueeesuseasuseeaseeaasesaasseaaaseasaseasseeaasseasasessasessseeaaseeesssessnsessnsessnsessssnes
SEARCH_GENRANK FUNCTION .
SEARCH_GETRESULTS FUNCTION . 1.ttt tutteetttesuteasuteasteeaaseeasseeaaaseasaseeaseesassessssessasessasesaassessssessnsessnsessnsesesnnes
SEARCH_GETTERMS FUNCTIONeutttiutteestteesuteasuteasteeaaseeaaseeasaseasaseasseeaassessssessmsesssesaaseeesssessnsessnsessnsesssnnens
SETDOCDATASTR FUNCTION ... ttteuteaateeaateeesuteasuteeaaseeaaseeaaseeasaseasaseaaseeaasseeaaseesmbeesnseeaaseeessbeesmbeasnbeesnseeesaneas
SETDOCDATE FUNCTION .. ettteuteesuteaateesaseeeaaseasasesaaseeaaseeaasseaaaseasaseeabeeaaseeesaseesmbeeaseeaabeeesaseesaseesnseesaseeesnneas
SETDOCDATETIME FUNCTIONutttuteaateeeatteesuteasuseesseeaaseeaasseasaseasnseesasesaassessssessnsessasesaasseesssessnsessnsessasesesnees
SETRANKY AL FUNCTION ..uttteuteasuteaaateeaaueeesuaeasmseesseeaaseeaasseasaseasasessseeaassessasessmsesssesaasseesaseesnsessnsessnsesssnens
SOPT_DOCLIMIT PROPERTY .
SOPT_RANK_TO_BOOLEAN PROPERTY ...ccittteiuteasuteaateeaasesaasesasusessseeaasesaasssssssessasessasesassssssssessnsessasessssessssens
SRES DAY PROPERTY ..cuttteitttasuteaateaaaseeaaseeesuseasasesasesaasesaasseaaasessaseeaasesaassessasessnsesssesaasseesaseesnsessnseesaseeessnens
SRES DOCDATA PROPERTY ...tiiuttaiuteaateeaauetesuteasuseeaseeaasesaasseasaseasaseesasesaassessssessasessasesaasseessseesnsessnsessnsessssnes
SRES DOCID PROPERTY
SRES DOCSFOUND PROPERTY
SRES DOCSRETURNED PROPERTYtctiutttatttesuteasuteesseeaasesaasseasssessnsesaasesaasssssssessasessasesassssessseesnsessnsessssesssens
SRES MONTH PROPERTY ...uutteuteaauteaateeaaueeesuseasasesaasesaaseeaasseasssessasesaasesaasssssssessnsessasesassssessseesnsessnsesssseessnens
SRES NUMTERMS PROPERTYuutteiutetitetaatetesuseasuseesseeaasesaasssaasseasasessasesaassessssessasessasesanssssssseessessnsessmsesssnens
SRES RELEVANCE PROPERTY ...uuttiiutetitetastetesuteasuseeasesaasesaasseaaasessasessasessasssssssessnsessasesassssesssessnsessnsessssessssens
SRES SEARCHVERSION PROPERTYciiutttatttesuteasuteestesaasesaasseaassessnsessasesaasssssssessasessasessasssesssesssessnsessssesssnns
SRES TERM PROPERTY .
SRES TERMCOUNT PROPERTY ...uttiiuteeitetaateeesuteasusessseesasesaasseaassessnseesasesaassessssessasessasesassssessseesnsessnsessnsessssens
SRES YEAR PROPERTY ...uttitittteiuteaauteaaateeaaseeaauseasaseaaseesasesaasseaaaseasaseaasesaassesaasessabesssesaaseeesaseesaseesnseesaseessanens
STARTDOC FUNCTION .utttetetesuteasuteaaateeaaseeesuseasasesaseeaasesaasseaaaseasaseeaseeaasseeaaseesabeeaaseeaabeeeanbeesabeasnseesasneesnneas
STARTDOC_STARTLOC PROPERTY ...

AVSINDEX CONSTANTS ..ottt e s e e e sr e nes 201

DOCUMENT CONVERSION APl <. it e e e e e e e e bbb e e e s s e e e bbb s e e s s e eaabba s 202
CLASS AV SDO CUMENT ...eeieiieiitietteeeeeessessesssssssssssssssssasssnns 203

CONVERT_FILEZHTML FUNCTION .1ttttiteiiiautttseeseesssssstssessassssasssssesssssssnssssssesssssssnssssssessessssnnsssssssssssssnnssssseess
CONVERT_FILE2TEXT FUNCTION-
CVTERRMSG FUNCTION L. uuititiiiiiia i s e s e s e s s b s e s s e s s s b s e s b e s s s b e s b s s s e b s s b e a s abneaas
ERRMSG FUNCTION L uitiitiiitiiia i s e s s s b e s e s s b e s s e aa s b s e s s e s s s b e s s e a s e s b s e s b s b s s s b e e s s nbanas
LASTCVTERR PROPERTY ittt s a s s s s e s e s s s b s e s s s s s s b s e s b s a s e e b e s s s b s s s b e e s s nbnnas
I I (O o (0 o P
OPT _CVTPATH PROPERTY Luiititiiiiiii s s a s s s s e e s b s s s s b e s b s s s e e s b s a s abnaas

AVSDOCUMENT CONSTANTS ..ottt e 211

O—vii

1

Product Overview

The AltaVista™ Search Developer's Kit Version lets you build your own search and retrieval
application or add AltaVista Search-powered search capahilities to database applications and
file repositories. Users can find what they need quickly and easily without special database
training. The software also provides system integrators and software devel opers with the tools
they need to integrate the AltaVista Search engine technology into custom applications
designed to provide search and retrieval capabilities for data repositories not supported by
standard AltaVista Search products.

Typical examples of these kinds of data repositories are:

Type of Database

Description

Contain discretefiles. Shared folders and directories containing

Unstructured large numbers of documents on LANSs are examples of
unstructured repository.
Contain fielded data. Database applications like Oracle, Sybase,
Structured Ingres, Microsoft Access, SQL and DB2 are exampl es of

structured repository. These structured repositories are also not
web-based.

You can also use AltaVista Search Developer's Kit to index Gopher sites.

Note: The Developer's Kit does not provide aweb crawler or user interface.

Requirements

The following are the minimum hardware and software requirements for installing the
AltaVista Search Developer's Kit:

Requirements

Description

Hardware

Any Alpha system running either Microsoft® Windows NT® Version
4.0 or Compaq True4 UNIX (Digital UNIX™) Version 4.0

Intel ™ Pentium system with a 133 MHz processor running Microsoft
Windows NT Version 4.0. Windows 95 and Windows 98 are also
supported operating systems for Intel hardware.

Sun® SPARC system running Solaris® Version 2.5.1, 2.6 or 2.7
IBM™ RS6000 system running AlX version 4.21 or later

Product Overview

Requirements

Description

Inted™ Pentium System running Red Hat Linux Version 5.0

Software

C language compiler and standard libraries.
Or Microsoft's Visual Basic

A web browser for viewing the documentation.

Application Runtime

Sufficient RAM to get desired performance which is dependent on
application behavior and index size. There is no specific minimum
requirement for RAM.

Approximately 1 GB of disk space after installation for building and
storing a moderately-sized index

Components

The Developer's Kit includes these components:

Indexing engine

APIs

Converter libraries
and converter API

AltaVista Search
Intranet
compatibility API

Documentation

1-2

Thisis the same indexing engine used by the AltaVista Search
Intranet product and the AltaVista Public Search Service on the
World Wide Web.

Routines that allow applications to access and manipul ate the
AltaVista Search index. The Developer's Kit provides the following
language support:

C language
Visual Basic

A document converter API that contains document conversion
technologies from Inso Corporation, Adobe Systems, Inc., and
Compag Computer Corporation. Using the libraries and the API, you
can convert various document types to text. Only PDF documents can
be converted to HTML at thistime.

An API that provides compatibility with AltaVista Search Intranet
V2.3 by allowing the Developer's Kit applications to read data from
and write data to indexes created by the AltaVista Search Intranet
product. This new featureis available with the C API only and runs
on the following operating systems:

Any Alpha system running either Microsoft® Windows
NT® Version 4.0 or Compag Tru64 UNIX (Digital
UNIX™) Version 4.0

Intel™ Pentium system with a 133 MHz processor
running Microsoft Windows NT Version 4.0.

Sun® SPARC system running Solaris® Version 2.5.1, 2.6
or 2.7

Covers descriptions of the APIs, APl usage, along with project
planning and programming suggestions.

M ulti-pur pose-
programming
examples

Development license

Product Overview

Most programming optionsin C and Visual Basic are coded in the
sample programs. These coding examples can be copied and modified
by developers. The sample programs are compiled for you and are
available to run on the appropriate operating systems:

C APl - Compaq True4 UNIX, Sun Solaris, IBM AlX,
or Linux on Intel 1X86(avs_sample), and Microsoft
Windows NT (avs_sample.exe).

Visual Basic - on Microsoft Windows NT
(vb_sample.exe)

There are other examples provided as samples for interfacing the
Developer's Kit to additional programming languages:

A Java JDirect implementation

C++ implementation with includes a sample database
application using Data Access Object (DAO) and the
Deve oper's Kit

A Tcl implementation

Allows developersto create, demonstrate, and pilot their AltaVista
Search powered solution on one server. (Runtime licenses are
required to implement and sdll the AltaVista Search-powered
solution.)

The AltaVista Search Developer's Kit does not provide a user or query interface to the index.
Thisis part of the development partner's added value. Y ou are free to use any user interface
model that meets your customer's needs, for example, Web browsers, Visual Basic-based Uls,
existing end user applications, and so forth.

The AltaVista Search C library lets you create and maintain an inverted word index. Y ou can
make calls to the AltaVista Search index from any language that links with C, or use Visual
Basic on the Microsoft Windows NT platform.

New Features in Version 2.6
The following table lists the new features that have been added to the AltaVista Search

Developer's Kit:

New Features

Description

Document Converter
Libraries

A new document converter library, which converts various
document typesto text, is available for the C and Visual Basic
APIs. The sample C program contains an example that usesthe
new converter API calls. Thisfeature isavailable on the
following: any Alpha system running either Microsoft ®
Windows NT ® Version 4.0 or Compaq Trué4 UNIX (Digital
UNIX) Version 4.0; Inted™ Pentium system with a 133 MHz
processor running Microsoft Windows NT Version 4.0.; or
Sun® SPARC system running Solaris® Version 2.5.1, 2.6 or 2.7.
For more information, see Converting Documents for

Indexing.

Product Overview

New Features Description

AltaVista Search Intranet An API that provides compatibility with AltaVista Search
compatibility API Intranet V2.3 by allowing the Developer's Kit applications to

read data from and write data to indexes created by the
AltaVista Search Intranet product. This new feature is available
with the C API only and runs on any Alpha system running
either Microsoft ® Windows NT ® Version 4.0 or Compagq Tru64
UNIX (Digital UNIX) Version 4.0; Intel ™ Pentium system
with a 133 MHz processor running Microsoft Windows NT
Version 4.0.; or Sun® SPARC system running Solaris® Version
2.5.1, 2.6, or 2.7. For more information, see Using the
AltaVista Search Intranet Compatibility API.

New Platforms Available The AltaVista Search Developer'sKit is available on IBM

RS6000 running AIX Version 4.21 or later, aswdl as, an Intel
Pentium system running Red Hat Linux Version 5.0. The
converter libraries are not available with these platforms.

New word weighting option | A new search option allows you to eiminate the higher

weighting of words occurring at the beginning of a document.

Wildcard feature available The word count feature now supports the use of wildcards. The
with word count. wildcard characters'?, "', and **"' can be used to represent 1, 0

to 5, and O to unlimited characters, respectively.

New sample programs To demongtrate the use of the new conversion technologies, the

Visual Basic sample program and the C program have been
updated. The samplefiles and their executablefiles, are
contained in the Developer's Kit. The C sample program also
contains an example of using the AV S| compatibility API

General Indexing Process

The AltaVista Search programming interface implements a number of procedures for managing
text indexes and document filters. Y ou can use the programming interface to do the following

things:

Create a new index.

Optionally convert your documents to text.

Add documentsto the index .

Use filters as hel per procedures to parse the contents of a document and customize the
way it isindexed. Thefilters that you use depend on the type and format of the
document you areincluding in your index.

Using your own query interface, submit queriesto the index and retrieve documents
that match the queries.

Delete documents from the index, or replace existing documents with updated
versions.

Periodically write the contents of the in-memory index to disk, and merge the on-disk
information into asingle, streamlined file.

Product Overview

The C Programmer's Reference and the Visual Basic Programmer's Reference provide
compl ete details on every procedure and function in the APIs.

2

Indexing, Searching, and Converting

This section describes the processes of indexing, searching, and converting. It gives a
conceptual overview of each process, and then step-by-step instructions on the following:

Creating the Index

Searching the Index

Converting Documents for Indexing (optional)

Using the AltaVista Search Intranet Compatibility API

Creating the Index

Creating and searching your index can be made easy if you (as an AltaVista application
programmer) adopt a model of how to handle the material to be indexed and for which you will
subsequently search. The AltaVista Model of Indexing uses documents which, in turn, consist of
a sequence of words. Each word occupies a location within the document, and these locations
are sequential for adjacent words.

The Indexing Method

To index a document, your application calls the indexer for each word in the document, passing
an integer location along with the word to indicate where the word is put. It then callsa
procedure to give the indexer some identification data that can be retrieved for documents
matching a query, for example, in title, filename, URL, and so forth. The integer locations can
be anything you want, but, normally, you would number the words in each document
sequentially. The integer location for each word is then just its number. This indexing method
takes about 30% of the size of the original document. It allows phrased queries and fielded
queries.

What is a Word?

The definition of aword in your index depends on the character set that you have assigned to
theindex. It is necessary that al callsto the APl use the same character set. Y ou can index any
character string you want (with some restrictions) asaword, using avs_addliteral, and you can
find the documents with these words using the advanced boolean expression in the form
{word}.

The avs_addwor d algorithm treats any contiguous sequence of alphanumeric charactersasa
word. For each word to be indexed, avs addwor d does the following:

Entersthe word into the index at the current or next location
2—7

Indexing, Searching and Converting

2-8

Determinesif thereis any capitalization in the word, and if so, also indexes a lower-
cased version

Determinesif thereis a common mapping from any of the charactersin the word to
ASCII, and if so, indexes one or two additional versions of the word using these

mappings.

For non-al phabetic languages however, this algorithm is modified. Currently, each non-
alphabetic, non-digit, non-separator character istreated as aword by itself. Special query
processing algorithms are employed to efficiently locate the character sequences that users of
the language would normally identify as words.

The Importance of Locations
AltaVista Search uses location values for the following:

Matches words to documents
Matches fields within documents
Determines the adjacency of words (for example, phrase searches)

The boundaries between documents and words are important for finding and returning
meaningful search results. In addition, word location isimportant for processing advanced
gueries where the position of certain wordsin relation to each other isimportant (for example,
in searching for phrases, in proximity searches, or in searching for certain wordswithin a
specified field).

It iscritically important to assign location values properly during indexing. The assigning of
locationsis fully automatic in the simplest case where avs addwor d does all the work. In this
case the words of the document are laid out end to end and are numbered sequentially starting
with the value returned by avs_newdoc or avs_startdoc. The sameistruefor field boundaries
and for values (indexed quantities like dates that can be range-searched).

The following figure shows how two very short documents would be stored in the index
database.

Documentt Document2

wiard | this is a short document J::z:::: shorter m
Location | 1 2 3 L) g =} =] n

Asthefigureillustrates, each word is actually stored as a word-location pair. The index also
contains information about the beginning and ending locations of each document. Document1
starts at location 1, and Document2 starts at location 6.

In Document?2, the first word contains an uppercase letter, so the word is indexed twice: once
with case preserved and oncein all lowercase. Both versions of the word are at the same
location, so that the word would be found appropriately regardless of whether a query is case
sensitive or case-insensitive.

Tracking the Location of the Documents

In the C AFI, the avs_newdoc procedure, in cooperation with the filter, keepstrack of the
gtarting and ending location of documents in the index. When the avs_newdoc or avs_startdoc
procedure callsthefilter, it passesthefilter alocation at which to start adding words to the
index. When the filter starts adding words, it in turn passes the starting location to the

Indexing, Searching, and Converting

avs_addword procedure. Based on the starting location, the avs_addword procedure
increments the location number for each word that it indexes, thereby assigning each word a
unique virtual addressin the indexed document.

If thefilter callsavs addwor d multiple times (for example, once for each linein the
document), the filter must increment the starting location each time by the number of words
indexed in the previous avs_addword procedure.

When thefilter completesits work, it returns the total number of words that it added to the
index. This also allows filters to be nested.

Steps to Indexing
Y our application should follow these basic stepsto create an index:

1

6.

Optionally use the document conversion API to convert documents to text before
indexing.

Create the directory for your index. An AltaVistaindex needs a place on disk to
maintain its storage. When the C APl mentionsindex path, it isreferring to the storage
area of the index. Y ou should create and reserve a directory for the use of each index,
and pass the path name of thisdirectory to avs_open in order to access the index.

Optionally, define value types with avs_define_valtype or
avs_define valtype multipleto be used for adding searchable numeric values or
ranking terms to the documents to be indexed.

Open theindex in mode rw, using avs_open

The C APl supports a parameter block which is passed to avs_open, and which can be
used to alter the customary default options for creating and managing indexes. See
avs parameter s structure for a description of thisblock. Thefirst timeavs open is
called for anew or empty directory, the parameters then in effect are used to create
and initialize the index structure. Theindex is empty at this point, but its parameters
arefixed.

For each document to be added:

Initialize the document and assign its document identifier, using avs _newdoc
or avs startdoc.

Add the words, fields, and values belonging to the document, using the
avs addword, avs adddate, avs addliteral, avs addvalue, and avs addfield
procedures.

Assign a date to the document, using avs _setdocdate or avs_setdocdatetime
(for ranking by date).

Assign an opague data structure to meet any needs of your search and display
logic, using avs_setdocdata -- this structure is retrievable from a search result,
along with the document's unique document identifier and date.

Assign any additional ranking values, using avs_setrankval
Finalize the document, using avs_enddoc if initialized with avs_startdoc

Every so many documents (every half million words or so), and when the last
document has been processed, make the actual update to the index, by using
avs makestable.

Indexing, Searching and Converting

2-10

After each call to avs makestable, call avs compactionneeded and if indicated, do a
loop of avs compact minor callsto tune the index structure.

7. Closetheindex with avs close.
8. Release any previoudly defined value types with avs release valtypes.

Anindex that is open in rwmode is also available for performing searches. You can perform a
search at any time, in the same thread as the updates to the index or in other threads. You can
even open theindex in r mode in another process, perform a simple search, and then close the
index again.

Differences Between avs_newdoc and avs_startdoc

The procedures avs_newdoc and theavs_startdoc/avs_enddoc pair are used to enter
documentsinto the index but have different structures. The avs_newdoc procedure uses the
callback function and implicitly calls afilter to process the data being entered into the index.

For languages that cannot use the callback mechanism (for example, Visual Basic and Java),
avs_startdoc and avs_enddoc procedures handle entering the document data with an explicit
cal to the filter function that processes the data.

The following code fragments have the same results

1. avs_newdoc(idx, datapath,filter, docid, flags,&numWords);

2. avs_startdoc(idx, docid, flags, &startloc);
filter(idx, datapath, startloc, &numWords);
avs_enddoc (idx);

Adding New Documents Efficiently

You can add new documents, update existing documents, and delete old documentsin your
index at any time. You will find it is more efficient to do several additions and deletions at
once, rather than doing them one at atime. Y ou can till query your existing index while the
additions and deletions take place.

The following diagram illustrates the interaction of your application code and the AltaVista
Search library during the addition of a new document to the index using the new avs_newdoc
procedure.

Indexing, Searching, and Converting

User Application

v v v v y

avs_open avs_newdoc avs_makestahle aws_compact avs_close

AVS Librany

Anplication's Filter Function

¢ h 2 ¢ ¢ L

avs_addword avs_setdocdate avs_setdocdata avs_addfield avs_setrankval

From your application, you make the appropriate C API calls to open theindex you are
populating. Use the filters to process or convert the documents you are adding to your index.
Your application calls avs makestable to write the index to disk, and closestheindex. To
access the newly-built index, use the query interface you have created and start querying the
index.

Creating a Filter Procedure

The avs_newdaoc procedure defines a block of text as a document and establishes an identifier
with which the document can be found in the index. The avs_newdoc procedure also defines a
filter, which iswritten or supplied by you, the application programmer. Thefilter function is
called each time your application calls avs_newdoc to create a separate document in the index.
If theavs_startdoc and avs_enddoc procedures are used instead of avs_newdoc, thefilter
procedure is called between these two calls.

The filter does the bulk of the work of preparing the document to be indexed. It is at the filter
stage where any necessary document type conversion takes place. The document conversion
libraries may be used at this point to convert documents to text before being added to the index.
Alternatively, the application could do a bulk conversion of the documents beforehand. The
filter function is called using the following required arguments:

IN avshdl_t idx (index handle)

IN void *pFname (information sufficient for the filter to access
the document contents)

IN unsigned long startloc (starting location for adding words)

OUT unsigned long *pNumWords (number of words added to the
index)

Once the filter isfinished processing a block of text, it can passthetext (in theform of aline, a
paragraph, or even the entire document), to the avs addword procedure. The avs_addword
procedure parses the text into words and adds those words to the index. It interprets as a word
any sequence of letters or digitsthat is surrounded by spaces or other non-alphanumeric
characters. When it adds aword to the index, the avs_addwor d procedure preserves the case of

2-11

Indexing, Searching and Converting

2-12

theword asit appears in the document. If the word contains any uppercase letters, the software
also indexes a lowercase version of the word, to support case-insensitive searching.

In addition to preparing the document so that each word in it can be indexed by avs_addword,
you can use these callsin thefilter to also do the following:

Use... To...

avs setdocdate Set a date for the document

avs setdocdata Specify a data string to be returned as a search result

avs setdocdatetime Set a date and time for the document.

avs addfield Identify certain words to be indexed asfields.

avs addliteral Add a single word exactly as entered to a document index.
avs adddate Index the supplied date at the specified | ocation.

avs addvalue Index the supplied value at the specified location.

avs setrankval Add a nume_ric value to a document index that can be used for
—_ custom ranking.

For example, if you are indexing mail messages and want users to be able to search based on
the subject line of a message, you might identify the subject text of each document as the
"Subject:" field and use the avs_addfield procedure to index it as such.

Examples of Indexing Techniques

The next several sections discuss some indexing techniques that could be useful in building the
kind of index you need.

Defining Searchable Numeric Values

With the Developer's Kit, you can add your own searchable values.

To add your own value types for searching and ordering search results, follow these stepsin
structuring your application:

1. Useavs define valtype procedure to define your value type. For example, suppose
you want to define a new value type called lines to count the number of lines per
document. Y ou must supply the name (lines) and the lowest and highest possible
values. The following code example defines the value type for searching, in this case,
the number of lines per document.

error = avs_define_valtype ("lines"™, 0, 10000, NULL,
&linesvaltype);

if (error 1= AVS 0K) {

printf (“avs_define_valtype returned %s\n", avs_errmsg(error));
return 1;

}

Note: You should call avs define_valtype only in your main thread when no indexes
are open.

Indexing, Searching, and Converting

2. Toenter asearchable value, call the avs addvalue procedure. The following code
examples adds a searchabl e value (number of lines). You can uselinesin a Boolean
guery to constrain the results, for example, [lines:50-200].

error = avs_addvalue (idx, linesvaltype, lineo, startloc);
if (error 1= AVS 0K) {
printf (avs_addvalue returned: %s\n" avs_errmsg(error));

}

3. Cadltheavs release valtypes procedure after the last call to avs _close to release the
values.

If the natural way to specify a searchable value is not an integer, you may supply a function
that can convert the search string into an integer value in the right range. The function isthen
passed to avs _define valtype. For example, you may want to search or rank results by a part
number which consists of an alphanumeric string. Y our application code may contain the
following: avs_defi ne_val type ("partnuni, 0, 1000, partnun®int(),
&par t nunval t ype) where parthum2int() isafunction supplied by your application that
converts an alphanumeric part number to an integer value.

Defining Your Own Ranking Values

With the Devel opers Kit extended ranking capability, you can add your own ranking values for
ordering search results. Rank valuesinclude a type and the value.

To add your own value types for ordering search results, follow these stepsin structuring your
application:

1. Useavs define valtype procedureto define your value type. For example, suppose
you want to define a new value type called rlines to order search results by the the
number of lines per document. Y ou must supply the name (rlines), the lowest and
highest possible values. The following code example defines the value type for
extended ranking of search results, in this case, the number of lines per document.

error = avs_define_valtype ("rlines"™, 0, 10000, NULL,
&rlinesvaltype);
if (error 1= AVS 0K) {
printf (“avs_define_valtype returned %s\n",
avs_errmsg(error));
return 1;
}

When defining value types for ranking purposes, always specify a minimum value of
zero. Values are normalized to zero when stored in the index. If you chooseto use a
minimum value other than zero, your application must normalize the values to zero
before performing a search.

Note: You should call avs _define valtype only in your main thread when no indexes
are open.

2. Toassign arank value for adocument, use acall to the avs setrankval procedure.
The following example adds a ranking value (the number of lines):

error = avs_setrankval (idx, rlinesvaltype, lineno);
if (error 1= AVS OK) {
printf (avs_setrankval returned: %s\n:, avs_errmsg(error));

}

2-13

Indexing, Searching and Converting

2-14

3. Cdltheavs release valtypes procedure after the last call to avs _close to release the
values.

If the natural way to specify the filter value is not an integer, you may supply a function that
can convert the search string into an integer value in the right range. The function isthen
passed to avs define valtype. For example, you may want to rank results by a part number
which consists of an aphanumeric string. Y our application code may contain the following:
avs_define_valtype ("partnunmt, 0, 1000, partnun®int(),

&par t nunval t ype) where parthum2int() isafunction supplied by your application that
converts an alphanumeric part number to an integer value.

Defining Multiple Values

With the Devel oper's Kit, you can add multiple non-zero val ues to documents which can be
used to filter search results.

To add your multiple value type for filtering search results, follow these stepsin structuring
your application:

1. Useavs define valtype multiple procedureto define your value type. For example,
suppose you want to define a new value type called multi to represent the number of
words per linein adocument. You must supply the name (multi), the lowest and
highest possible values, and the maximum number of multiple filtering values. The
following code example defines the value type for filtering search results on multiple
values, in this case, the number of words per line.

error = avs_define_valtype multiple ("multi’, 0, 255, 255,
&multivaltype);
ifT (error 1= AVS 0K) {
printf (“avs_define_valtype_multiple returned %s\n",
avs_errmsg(error));
return 1;

}
When defining value types for filtering purposes, the minimum value must be zero.

Note: You should call avs define valtype multiple only in your main thread when
no indexes are open.

2. Toassign arank value for a document, use acall to the avs setrankval procedure.
The following example adds filter values for the number of words per line
(numwords).

ifT (numwords <256) numwordflags[numwords]++;
for (i="0;" 1><256" i++) {
it (numwordflags[i]) {
error="avs_setrankval™ (idx, multivaltype, i);
if (error 1="AVS OK)" {
printf (avs_setrankval returned: %s\n",
avs_errmsg(error));

}

}
3. Cdltheavs release valtypes procedure after the last call to avs _close to release the
values.

If the natural way to specify the filter value is not an integer, you may supply a function that
can convert the search string into an integer value in the right range. The function isthen
passed to avs define valtype multiple . For example, you may want to filter search results by
a part number which consists of an alphanumeric string. Y our application code may contain the

Indexing, Searching, and Converting

following: avs_define_valtype nmultiple ("partnum', 0, 255, 255,
part nunRint (), &partnunval type) wherepartnum2int()isafunction supplied by
your application that converts an alphanumeric part number to an integer value.

Unicode Support

The Developer's Kit provides the capahility to index full Unicode texts using the UTF-8
encoding. Unicode is a multi-byte encoding framework that provides for 2** 32 character
positions, of which only about 2**16 arefilled to date.

Unicode is aimed at multilingual environments and internationalization. The Developer's Kit
has limited support for automatic parsing of texts into words for the common European
character sets. The standard includes the following languages: Latin, Greek, Cyrillic,
Armenian, Hebrew, Arabic, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu,
Kannada, Malayan, Thai, Lao, Georgian, Tibetan, Japanese kana, the complete set of modern
Korean hangul, and a unified set of Chinese/Japanese/Korean (CJK) ideographs. The standard
isextensible and is continually enhanced. Refer to http://www.unicode.org/unicode/standard
for more information on the Unicode Standard.

You can gtill usethe single-byte ISO Latin-1 code set as an alternative, and a single-byte
ASCII8 modeis also provided which passes 8-bit characters through unchanged to the index.
The character set must be specified in the avs_parameter structure. LATIN1 is the factory
default. In the avs.h file the allowable character sets are defined as:

AVS CHARSET_LATIN1-0
AVS CHARSET_UTF8-1
AVS CHARSET_ASCII8 - 2

Handling HTML and SGML Special Characters

The avs _addwor d procedure will optionally detect and handle HTML or SGML entity
substitutions, for example, for accented characters asin é, so that ASCII HTML pages
containing accented words can be indexed properly.

The avs_addwor d parsing options are defined with the avs _setpar seflags procedure. To
enable SGML parsing, the parseflag is set asfollows:

#define AVS_PARSE_SGML 1

Indexing Documents with Dates

When you index your documents, you can set a date for each one through the avs_setdocdate
or the avs_setdocdatetime procedures. Once the dates are in the index, you can use the dates or
daterangesto limit your searches. The date isreturned in the search results.

The Developer's Kit is capable of storing dates from 01/01/0100 through 12/31/2148.

You can limit your query with a date range added as an extra Boolean term. The format of the
daterange is [dd/mm/yyyy-dd/mm/yyyy]. If you omit the beginning date, your query will
return everything in theindex with a date before the end date. If you omit the end date, your
query result will contain all documents with dates after the beginning date. If you want only the
documents indexed on one date, use the same beginning and ending dates. The end dates are
part of the range.

2-15

Indexing, Searching and Converting

2-16

Multiple Dates Associated with a Document

The procedure avs_adddate allows the indexing of multiple dates at various locations within a
document, for example, asa part of afidd. A document can be found using any or all of the
associ ated dates.

For example, suppase your application gets the time the document was last modified from the
operating system and uses this value with avs_setdocdate. Y ou can also associate another date
with the document - the date it was indexed. This code snippet demonstrates the use of the

avs adddate and avs_addfield to create afield called "Indexed" containing the current date.

time(<ime);
curtime = gmtime(<ime);
avs_adddate (idx, 1900+curtime->tm_year, l+curtime->tm_mon,
curtime->tm_mday, startloc);
avs_addfield (idx, "Indexed", startloc, startloc + 1);
startloc += 1;

Documents with multiple dates will be returned in date range searches if any of the dates
entered by avs adddate or avs setdocdate/avs setdocdatetime are in a given document. This
can be deceiving because only dates set by avs setdocdate and avs_setdocdatetime are
displayed as aresult of calling avs_search_getdate.

Searching the Index

With the Developer's Kit, you can perform the following types of searches:
simple
advanced - using Boolean terms
advanced - using the ranking mechanism
advanced - using a combination of Boolean and ranking

Usetheavs search, avs search_ex, or theavs search genrank procedure to search the index
you have created.

Both Boolean and ranking searches use an avs_options data structure, in which you can specify
the maximum number of documentsto return, and an optional timer limit (for multi-threaded
applications only). The options structure is defined in the avs.h header file and isinitialized by
acall totheavs default options procedure.

Understanding Relevance Ranking

A feature of AltaVista searching isthe optional ranking of results based on their probable
relevance to the search query.

The search engine ranks the results of a search based on a weight value assigned to each word
in the query, and aresulting overall relevance rating of each document that meets the search
criteria.

A document earns a relevance rating based on the number of wordsin the search query that it
contains, and the weight value of each of those words. The document containing the most
words with the highest weight value is considered most relevant. The closer the relevance
rating isto avalue of 1, the morelikely it is that a document meets the search criteria.

Indexing, Searching, and Converting

A search result can also have arelevancy ranking of zero (0). In this case, all results have the
same weight or are equally relevant. A relevancy ranking of zero can happen in the case where
the application did not specify aranking in the query.

The weight of aword is determined by the number of occurrences of that word in the entire
index. A word that occurs less frequently in the index earns a higher weight, based on the
assumption that it is more precise and specific than aword that occurs frequently.

For example, the word "programming” might occur many timesin an index, whereas the word
"COBOL" would probably occur less frequently. "COBOL" would be given a higher weight
than "programming” in a search query containing both words, because a document containing
only theword "COBOL" would be more likely to match the searcher's interest than a document
containing only the word "programming.” A document containing both "COBOL" and
"programming" would earn the highest relevancy ranking.

Note: The position of the word in the document, and the frequency of occurrence of the word
in a single document, have some bearing on the ranking of a document. The most significant
factor in determining ranking is the combined weight of wordsin the search query. Also, the
search engine considers only words without an operator preceding them when it does ranking.
If operators precede all words in the search query, the results are returned in no particular order.

Simple Query Syntax

To perform a basic search, use the operators plus (+) and minus (-) to indicate words or phrases
that are required or prohibited in the search results. For example, the following query
expression requests documents that must contain the word results and can aso contain the
phrase year end:

"year end" +results

Boolean Query Syntax

For Boolean searches, use the logic operators AND, OR, NOT, NEAR, and WITHIN. For
example, the following query requests that either of the words apple or pear appear in the same
document with either of the words tart or pie.

(apple OR pear) AND (tart OR pie)
The following query requests that both the words spreadsheet and training appear in a
document'stitle: field.

title: (spreadsheet AND training)

Rules for Query Processing

Both the ranking and Boolean search procedures follow the same basic rules for processing
gueries:

Like theindexer, the search engine interprets aword as any string of letters and digits
that is delineated by non-al phanumeric characters. Consequently, AltaVista Search
ignores punctuation except to interpret it as a separator for words.

A group of two or more words enclosed in double quotes indicates a phrase. Phrasing
ensures that the search engine finds the words together, instead of looking for separate
instances of each word individually.

2-17

Indexing, Searching and Converting

2-18

An asterisk (*), double asterisk (**), or question mark (?) following three or more
characters indicates a wildcard; the search engine will find all words that match the
specified pattern. For more information refer to the Searching with Wildcards

Case senditivity of a search is based on the case of each word in the query. A word in
all lowercase |etters results in a case-insensitive search, whereas if aword contains
any uppercase letters, the software searches for an exact-case match.

Basic Steps to Search the Index

The AltaVista Search programming interface provides a way to examine the contents of an
index once it has been created. Use the avs_sear ch and the avs_counts procedures to search
for the presence of a specified word or words.

1

Ensure that any application-specific value types used during indexing with
avs _define valtype or avs _define_valtype multiple are defined.

Usethe avs_open procedure to open theindex in r mode (or rwif you are also
updating the index at the sametime).

For each search request:

Call avs search (or avs search_ex or avs search genrank).

Call avs getsearchresults to retrieve each document that meets the search
criteria

Optionally call any of the following procedures to retrieve information
about the results:

avs search getdatalen

avs search getdata

avs search getdata copy

avs search getdate

avs search getdocid

avs search getrelevance

Use the returned search handle and other returned valuesto fetch any or
all result data.

Use avs search_close to end the procedure and free the resources
allocated for the search.

4. For each counts request:

Call avs_count to initialize the counting process, specify a word or word
prefix to search for, and obtain a handle for the count. To enumerate the
entireindex from ato z, specify a null value for the word (pWordprefix)
argument.

Pass the count handle to avs countnext, which retrieves the first index
entry. Continue calling avs_countnext to find subsequent entries that
match the search criteria, until the procedure returns
NO_MORE_WORDS.

Indexing, Searching, and Converting

After each call to avs countnext, use avs count_getcount to return the
total number of times the word occurs in the index.

Use avs count_getword to retrieve the word associated with the current
count.

Finally, end the procedure with avs count close.
5. Closetheindex using avs _close.
6. Release any previoudly defined value types with avs release valtypes.

You can usetheavs count and related procedures as diagnostic tools to
test for the presence of a specific word or word stem in theindex, or to
get a count of words or groups of words. Y ou might use the count
procedures to learn why users do not get the results they expect from a
guery, or to obtain a general idea of the makeup of your index.

How Results Are Ordered

The counts results are ordered lexicographically. The search results are ordered in one of
several ways, depending on which search call is used, and on the parameters of that call.

Theavs_search and avs_search_ex procedures assign to each matching document a
score based on how well that document matches the set of ranking terms provided in
the search call. If no ranking terms were provided, the results are presented in the
same order asthey were added to the index.

The avs_search_genrank procedure orders the results according to a named value
within the document, or by the document date or time. Higher values move documents
to the front of the sequence. Thisvalue nameis supplied in the pRankTerms parameter
and can be prefixed with aminus sign (-) to specify inverse ordering (lower values
first). The predefined ranking term #date is the name assigned to the document's date
and time as set by avs_setdocdate and avs_setdocdatetime.

Searching for Numeric Values

With the Developer's Kit you can extend the type syntax to index and subsequently search for
documents based on specific numeric values or ranges. For more information about indexing
and defining value types, see Defining Searchable Numeric Values.

After you have added numeric values to your index with the avs_addvalue procedure, you can
use the avs_sear ch procedure to define how to search for the Boolean Query expression and
the numeric range expression. The pBool Query argument in the avs_sear ch procedureis used
to specify the range of the numeric value type. For example, use the following format for an
application-defined value type like lines:

[lines:<min value> - <max value>]

Your C programs must provide a function to convert numeric valuesthat are not entered in
numeric format. For example, your user may want to search documents based on a range of
currency values that contain non-numeric characters. Specify afunction to convert these values
to integers when defining the value type with the avs_define valtype or

avs_define valtype multiple.

2-19

Indexing, Searching and Converting

2-20

With your application you can also control whether your results are returned in descending or
ascending order. In order to return the resultsin ascending order, placethe minussign (-) in
front of the value type.

Searching for a Field

The following query requests documents that must contain the field Subject: reorganization and
must not contain the field Date:07/07/97. The documents can also contain the word CEO but
arenot required to.

CEO +Subject:reorganization -Date:07/07/97

Searching for Literal Entries

Once you have added the literal index entries with the avs addliteral function, you can
perform an advanced search to find theliteral string. If the string you are looking for contains
special characters (for example, the forward dash (/)), you can use curly braces ({}) in the
guery string asin the following example: {cnn/xyz}. All characters between the matching curly
braces are treated as part of aword except the asterisk (*) which still works as awildcard.

Searching with Wildcards

AltaVista Search Intranet Developer's Kit provides extended wildcard support in all kinds of
searching. Wildcards are limited to the following characters:

After 3 specified characterswill search

Agterisk (*) for matchesin up to 5 trailing letters.

After 3 specified characters will match

i ?
Quetion Mark (?) exactly one more character.

More flexible asit will search for
Double Asterisk (**) matches for an unlimited number of
trailing characters.

With the Devel oper's kit, you can set the minimum number of characters before the wildcard in
the avs_parameter block when the default of 3 charactersis not sufficient for your needs. Y ou
also have the ability use the wildcards interchangeably and more than once in the same search
string, for example:

ser*ip?t*
This could possibly find the word serendipity.

You can also determine whether to limit to 50 the number of words found by the wildcard
character search or allow all instances of the word stem in the index you are searching. In the
avs_parameter block, set the unlimited_wild_words flag to 1 to avoid the 50 word limit.

Searching and Ranking with Dates

Documents with multiple dates will be returned in date range searches if any of the dates
entered by avs adddate or avs setdocdate/avs setdocdatetime are in a given document. This
can be deceiving since only dates set by avs setdocdate and avs_setdocdatetime are displayed
asaresult of calling avs_search_getdate.

Indexing, Searching, and Converting

Only dates set with avs_setdocdate or avs_setdocdatetime can be used to rank documents by
date.

Ranking Search Results

With the Developer's Kit, you can extend the type syntax to index and subsequently order
search results by the named ranking value. For more information about indexing and defining
value types, see Defining Your Own Ranking Values.

After you have added extended types to your index by the avs_setrankval procedure, you can
usethe avs_sear ch_genrank procedure to search for the Boolean query expression using the
generic ranking expression. The pRankTerms argument in the avs_search_genrank procedure
can be either a predefined term, for example, #date, or an application defined value type like
rlines. The special ranking setup argument pRankSetup should always be set to NULL for this
release,

For example, you could use avs _define_valtype procedure to define the number of linesin a
document. Use avs_sear ch_genrank to rank search results by number of lines per document.

With your application you can also control whether your results are returned in descending or
ascending order. In order to return the resultsin ascending order, place a minus sign (-) in front
of the value type.

Your C program must provide afunction to convert ranking values that are not entered in
numeric format. For example, your user may want to rank by part numbersthat contain
alphanumeric characters. Because ranking values are al integers, your function must be able to
convert the query string into an integer value to return a search result.

Filtering Search Results

With the Devel oper's Kit you can extend the type syntax to index and filter search results. For
more information about indexing and defining val ue types, see Defining Y our Own Ranking
Values and Defining Multiple Values.

After you have added extended rank values to your index with the avs_setrankval procedure,
you can use the avs_search_genrank procedure to search using a Boolean query expression
and filter the results. The pRankTerms argument in the avs_sear ch_genrank procedure can be
afilter expression containing an application-defined value type. For example, given the
Boolean query pi zza NEAR "t o go" andthefilter expressonmul ti?((1-3, 5),the
index is searched for all documents containing pizza, near the words to go, and then returns
only those documents whose extended value type multi is between 1-3 or 5.

Your C programs must provide a function to convert ranking values that are not entered in
numeric format. For example, your user may want to search for a part number that contains
alphanumeric characters. Because filter values are all integers, your function must be able to
convert the query string into an integer value to return a search result.

Incremental Searching

Your application can call the avs_getsear chver sion procedure to return the version of the
index for the current search result. This version string can then be passed to a subsequent
search operation to limit results to those documents added to the index since the previous
search.

2-21

Indexing, Searching and Converting

2-22

The searchsince option is available on theavs_search_ex and the avs_search_genrank
procedures. This value can be passed to these procedures to limit the results of a subsequent
search to data indexed since the last search.

Proximity Searching

AltaVista Search keeps track of the positional relationships between words as it indexes them.
The advanced search capability provides support for Boolean searches, including AND, OR,
NOT and NEAR (proximity) searches. Thisallows for phrase searching and proximity
searching to be performed on indexed documents.

With the Devel oper's Kit you can use the WITHIN ## (where ## is the number of words)
command to control the number of words apart the wordsin your query string can be. For
example, if you want to find the word Mary within 5 words of lamb, use the Boolean query
string:

"Mary WITHIN 5 lamb™
This query will bring aresult for Mary and lamb when they are not more than 5 words apart
instead of the default of 10 words apart. Using NEAR in your search isthe same as using
WITHIN 10.

Query Processing Timeout Support

A new option on theavs_sear ch (timeout) and a new api call (avs timer) alows multi-
threaded applications to enforce maximum query processing times.

Theavs_timer procedureisused by an application's timer thread to pass a current timer value
from the application to the AltaVista search operation. In this way, search operations can be be
limited in processing duration. If the application does not have a timer thread, no search
timeouts will occur.

In avs_options.timeout, you can set the number of timer units allowed for that query. At the
dtart of each search, AltaVista Search setsatimer limit equal to the current timer value plusthe
value of avs_options.timeout. It periodically checks the current timer value against the timer
limit. When the current timer value is greater than the limit, the search process stops and
returns the partial results accumulated so far.

Converting Documents for Indexing

The AltaVista Search Developer's Kit now provides a set of converter librariesand API calls
that you can use to convert your documents to text or HTML before indexing. The document
conversion technol ogies are those offered by Adobe Systems, Inc., Inso Corporation, and
Compag Computer Corporation. Most file types are supported. For a complete list of file types
that can be converted, click here. The Developer's Kit provides the following components for
your conversion needs:

Converter Description
Component

The C APl now comes with a document converter library (avscvt26.dll
on Windows NT, libavscvt26.a on UNIX). The avscvt.h file provides
callsthat ingpect the file to determine the file type and then convertsthe
document to either text or HTML. Note: Only PDF documents can be
converted to HTML at thistime.

Converter
Libraries

Indexing, Searching, and Converting

Converter Description
Component

For Windows NT, there are two supplemental files used with the
ActiveX component:

égtr:]\lloe;] ent for 1. avscvt26X.dll isthe component that provides an API to the ActiveX
NT Systems clients, for example, Visual Basic.

2. register_avscom.bat isthe batch file used with registering the
ActiveX component.

The two sample programs that use the document conversion
technologies:

1. avs sample.c contains an example of using the new document

Programming converter API. Using this sample program, you can covert

Samples documents to text before adding their contents to the index.
2. vb_sample.exeisthe Visual Basic program that uses the document
converter ActiveX object. (NT only)
Document
Conversion This directory contains the runtime libraries that must be placed in your
Runtime path for the document convertersto run.
Directory

Using the AltaVista Search Intranet Compatibility API
The AltaVista Search Intranet Compatibility APl allows an application to:

1. Search anindex created by the AltaVista Intranet product (V2.3), and retrieve the
document data. The document data contains the document's URL, title, abstract,
language and character encoding set.

2. Add adocument to an index created by the AltaVista Search Intranet product (V2.3),
or create a new index with compatible document data.

Use compatibility libraries (avsi26_mt.dll on Windows NT or libavsi26_r.aon UNIX) in
conjuntion with the procedures outlined in avs_compat.h.

When you open the index, be sureto initialize the avs_parameters structure as follows:
avs parameters t params=AVS PARAMETERS AVSI_COMPATIBILITY;

The initialization ensures that dates and other metadata are stored and retrieved in the same
format asthe AVS! index.

Use avs_setdocdata() instead of avs_setdocdata).
Use avs_getdocdata() instead of avs_getdata().

Use avsi_url2docid() to generate compatible document 1Ds from URLSs (See
avsi _sanpl e. ¢ for sample code).

Note:

The AV Sl index fileson UNIX are owned by daemon. If documents are added to the AVS
index through the Devel oper's Kit, make sure that the documents are still owned by daemon
before restarting AVS! or it will have problems reading the index.

2-23

Indexing, Searching and Converting

Restrictions:

Y ou may share an index between an SDK application and AltaVista Search Intranet V2.3 for
searching only. The AltaVista Intranet indexer must be shut down before updating the index

with your SDK application.

2-24

3

Advanced Concepts and Techniques

Managing a Growing Index
Onceindexing isin progress, there are several things you can do to manage the contents:
Use avs makestable to write the contents of the in-memory index to disk.
Use avs_compact to merge and streamline existing index files on disk.
Use avs deletedocid to remove an obsolete document from the index.

One of the reasons AltaVista Search indexing is so fast is that newly-indexed information is
stored in memory until your application explicitly writes the information to disk. The

avs makestable procedure writes the most recent index content to disk and integrates it with the
existing index. Asarule of thumb, you should call this procedure after approximately a half
million words areindexed. This action preserves the data and prevents the index from
consuming too much memory. Y ou should also call the avs makestable procedure before
closing theindex if any documents have been added or deleted since the previous

avs makestable call.

Each time you call the avs_ makestable procedure, the newly-added document information in
memory iswritten to a new, set of files on disk. So after several makestable calls, the on-disk
index will actually consist of several sets of files. Y ou should periodically use the avs compact
procedure to merge the existing set of filesinto one. Y ou might compact the index once a day,
during periods of least frequent use (the index is ill available for queries during compacting,
but you cannot add, update, or delete documents until compacting is complete). When
compacting the index would be detrimental to your system resources, call the
avs_compact_minor procedure. Thiswill cause compaction without recovering space from
deleted index entries.

Occasionally, a document may become obsolete and you will need to delete it from the index.
Usetheavs deletedocid procedure to remove the document from the index database. Pass the
identifier that the document received when the avs_newdoc procedure created it. The
document will be marked for deletion and at the next call to the avs makestable procedure, it
will be removed from the index.

If there are any documentsin the pending document set (those documents added since the last
call to avs makestable), an error (AS_DOC_EXISTY) isreturned and no documents are
deleted.

Note that compacting the index is needed to actually free the space occupied by deleted
documents.

3-25

Advanced Concepts and Techniques

3-26

Optimizing for Speed

The AltaVista Search index can operate in either query mode or build mode. Use query mode
when theindex isrdatively static and query load is high. Use build mode when updates are
frequent (and query performance does not have to be optimal).

The avs buildmode ex procedure provides more control over points on the build mode
spectrum. It allows one of the dynamic index parametersto be adjusted to provide less than the
maximum buildmode performance to avoid the worst case query performance hit.

The default index parameters, however, are usually adequate for all but the most demanding
applications. It is best to just leave the parameters at their default values, stay in build mode for
updates and querying, do afull compaction when it is convenient (low update and query load),
and adjust only when necessary.

If update performanceis not a problem, but query performanceis, try setting a value, for
example, 5 or 6, in theavs _buildmode_ex procedure (not avs_buildmode). Thiswill cause
your program to loop more frequently through the minor compaction procedure, costing some
time, but keeping the index in a higher state of query-processing tune.

A minor compaction (using avs_compact minor) is used during build mode to keep the index
size and complexity from exceeding reasonable bounds. It does the least amount of work it can
while accomplishing this critical task. A full compaction on the other hand tries to make the
index optimal for future query processing and updates, and takes more time to do this.
Naturally, an index is more compact after a full compaction than after a minor one.

Programming Models

With the Devel oper's Kit, you can use different programming models which directly effect the
performance of your indexing and querying processes.

Using the Multi-Threaded Model

The high performance model for using the Developer's kit is to do everything within asingle
multi-threaded process. In this model, at most one thread is responsible for managing the index,
and as many threads as desired can issue queries. All threads use fine-grain thread locks to keep
the shared in-memory data structure stable. Theindex is opened only once by the main thread.
This model is often set up as a server with users requests coming in and being serviced through
socket connections or some other mechanism.

Using the Multiple Process Model

You can aso have a multiple process model: one process for handling updates and other
management functions, and as many processes as desired doing queries. The update process
should open theindex in read/write (rw) mode. The other processes should open theindex in
read (r) mode. Thismodel works well on the relatively short-lived query processes, because at
akey point in the update (rw) process, it waits for all the processesin read mode to be closed
before proceeding.

In either model, only the unique thread or process which is managing theindex is alowed to
issue avs_querymode or avs_buildmode calls. These calls actually change the on-disk format
of the index and incorporate compaction operations (in the case of avs_querymode) to be
effective.

The proper sequence for the update processis as follows:

10.
11.
12.
13.

Advanced Concepts and Techniques

Open theindex in read/write mode.
Place the index in build mode.
Perform the whole set of updates.
Place the index in query mode.
Close the index.
The sequence for the query processesis as follows:
1. Opentheindex in read mode.
2. Issue one or more search requests and the accompanying avs _search_getdata calls.
3. Closetheindex.

To get the best performance, it is recommended that the update process be run during the time
of low query activity because the combination of updating and performing queries at the same
time could be detrimental to your performance.

Tuning Compaqg Tru64 UNIX for Large Indexes

It isimperative for optimal indexing and searching speed to let the AltaVista Search
Developer's Kit memory-map the index files for reading. The indexer performs alookup for
every document at indexing time to check for duplicate document identifiers. It also reads all
the data during a compaction.

To avoid using excessive virtual memory on smaller machines, the kit limits the size of files
that will be mapped.

Y ou can modify the upper limit to the size of files that are memory-mapped. In your
application, use the cache threshold entry in the avs_parameters structure to set your cache
threshold to a large enough value to map your largest file. For example, suppose your largest
filein the index directory islessthan 500 MB, set the cache_threshold parameter as follows:

param.cache_threshold = (500000000)
Increasing Virtual Memory for Processes

In order to take advantage of the higher cache threshold, you must also increase the amount of
virtual memory that processes are allowed to use. The following process settings are
recommended for large index files:

proc: max-per-proc-address-space = 137438953472
proc: max-per-proc-data-size = 17179869184
proc: per-proc-address-space = 137438953472
proc: per-proc-data-size = 17129869184

This allows your processes to have alarge virtual address space.

Modifying the vm-mapentries Attribute

The vm-mapentries attribute specifies the maximum number of memory-mapped filesin a user
process, and limits the number of memory-mapped files available to each process. Each map
entry describes one unique digoint portion of avirtual address space. The default valueis 200.

Y ou may want to increase the value of the vm-mapentries attribute for very-large memory
systems to 20000. Thiswill increase the limit on file mapping. However, this attribute affects
all processes, and increasing its value will increase the demand for memory. If there are

3-27

Advanced Concepts and Techniques

potentially many files, the number of mmap entries allowed on your system must also be high.
Set the vim-mapentries value as follows:

vm-mapentries = 2000
vm-maxvas = 1337438953472

Modifying the ubc-maxpercent Attribute

Indexing usually consumes a moderate amount of virtual memory and uses alarge set of files.
The virtual memory subsystem and the Unified Buffer Cache (UBC), which cachesfile system
data, share the physical memory that is not wired by the kernel. The default value of the ubc-
maxpercent attributeis 100 (percent).

Y ou can determine whether you should increase or lower the value of ubc-maxpercent by
looking at the amount of free space after the application has been in use for sometime. Use the
vmstat command to display information about virtual memory. Y ou should aim for a few
megabytes of free space and no page outs ever. The measurement should occur during the
indexing process because indexing uses more RAM.

Too much memory allocated to the UBC may cause excessive paging and swapping, which
may degrade performance. However, an insufficient amount of memory allocated to the UBC
may cause excessive disk 1/0 operations. Y ou can reduce the value of the ubc-maxpercent
attribute but the value can only be determined by experimenting on your machine. If your
system exhibits excessive paging and swapping, reduce the value in decrements of 10%. Do not
decrease the value to the point at which file system performance is degraded.

If ubc-maxpercent is set to alow value, you may want to increase the value if your disks are
busy with file system 1/0 but the system has a high free page count. Y ou should attempt to
keep in memory the working set of your processes, even if this meansincreasing the amount of
UBC misses.

Note: Changing the ubc-maxpercent attribute valuein / et ¢/ sysconfi gt ab requiresthat
you reboot your system. To avoid this step, you could use the dbx utility to modify the ubc-
maxpages attribute, for example:

dbx -k /vmunix
p ubc_maxpages
assign ubc maxpages = ubc-maxpages — 1000

The conversion factor between the ubc-maxpercent attribute and ubc-maxpages attributeis:
ubc-maxpages = total_phys pages_in_machine * ubc-maxpercent/100

If you in crease the value of ubc-maxpages, the buffer cache will use the memory within 10's of
seconds if the machineis active. If you decrease the value, it takes much longer (tens of
minutes) for the change to take effect. Once you have established the right value, calculate the
value of ubc-maxpercent, and modify / et ¢/ sysconf i gt ab using the new value.

How the Public AltaVista Search Site Sets the Virtual Memory
Attributes
The AltaVista Search site on the web has the following setting for its virtual memory attributes:
vm-mapentries = 1000

vm-maxvas = 1337438953472
ubc-maxpercent = 70

3-28

Advanced Concepts and Techniques

The following are settings for processes:

max-per-proc-address-space = 137438953472
max-per-proc-data-size = 17179869184
per-proc-address-space = 137438953472
per-proc-data-size = 17179869184
max-proc-per-user = 256

max-t hr eads- per - user = 2048

Typically these machines are larger than average: 8-processor, 6-8 GB.

Indexing with Database Applications

With the Devel oper's Kit, the application developer hastotal control over what isindexed, what
isretrieved from a search, and how to interpret the search results before showing them to the
user. Assuming the application has access to the database, the application can simply store the
retrieval identifier or the primary key with the index data and then retrieve and compute the
appropriate display from the database. It is even possible to store the whole row as the
retrievable index data and avoid query-time access to the database if your index is small

enough and does not require frequent reindexing.

1. hip the contants 2. Gpecify 3 3. Add documents
of the database unique identifier 1o the index
into documents for each document using the AP|

quenFpg=qZ
cgi soript
% plug-in code using B
native database callz
5. Decide how 4. Create a
b ferming th to retrieve search user interface

:"ethpaf:tri emng the user rezults from for quarying
0 the database ouner the database the index

The following steps describe the process you use to create an index containing the contents of

your database:

1. Determinethe collection of data from the database that constitutes a document
statement, for example, tables, records, or reports.

2. For each document determine the metadata that uniquely associates the document with
the data source from step 1 (a URL, an SQL instruction, and so forth).

3. Using the Developer's Kit API calls, add words to the index.

4. Déefineauser interface to query the index.

5. Usethe metadata from the documents returned by the query to retrieve the data source

and display the results. For an example of a database implementation, seethe
avs_sampledb.cpp in thedao_sample directory.

3-29

Advanced Concepts and Techniques

3-30

Customizing Your Index with the Developer's Kit

In anew parameter block (avs parameters) passed to the avs_open procedure, you now have
control over the following:

Index scaling parameters with ntiers and nbuckets parameters.

At index creation, you can set the exact number of buckets and the maximum number
of tiersto be used. Buckets spread the index entries across multiplefiles. Tiersare
incremented by one every time avs_makestableis called. They are decreased by
avs_compact. If these parameters are set to zero (0), the default values used are:

Platform Tiers Buckets
Windows NT and Solaris 6 4
Compaq Tru64 UNIX 12 12

Thetiersaretunable for special purposes within a nominal range from 4-40. The index
uses fewer resources when these numbers are smaller, both in terms of the number of
files used and the number of filesthe index has open at once. All of which could effect
memory usage and other performance metrics.

The maximum number of tiers are not necessarily the active tiers. The number of
active tiers depend on what is occurring with the index, for example, avs_makestable
adds atier (unless the maximum setting would be exceeded). A full compact reduces a
tier and, therefore, gives the best subsequent query performance, and at the sametime
recovers the index space of the deleted documents.

Thetier value set at indexing time will be used by the index as the maximum number
of tiersthroughout the life of the index. After the index has been built, do afull
compaction of the index. For small updatesto theindex, use avs buildmode_ex with
asmaller tiersvalue. Call avs makestable and avs_compact_minor as needed

Periodically, perform afull compaction at a time when system resources are not under
a heavy load. Full compactionstake longer on alarger index. Do not use
avs_querymode after every update - just use avs_buildmode_ex and
avs_compact_minor. The only effect of avs_querymode isto do a full compaction and
set thetier limit to a smaller number.

Memory mapping:

The cache_threshold parameter sets the maximum sizein bytes of an index file that
can be memory-mapped. The default is 500,000. If you have alarge index and lots of
virtual memory, you can set this number to alarger value to get better performance for
the index.

Index Format:

The indexformat parameter allows you to force the on-disk format to a specific version
of theindex. The default value isthe'latest’ index format, which is currently version 2.
Version 1 indexes were dightly smaller, but also dightly slower to search. With
version 2, the maximum allowable size for any index fileon NT 4.0 and SUN
platformsis 512MB; with version 1 the size limitation was 2 GB. Normally, the
default index format should be sufficient for most indexing needs.

Advanced Concepts and Techniques

Wildcard grammar rules:

Y ou can change the minimum number of characters required in a search word before a
wild card character using the chars_before_wildcard parameter. The default is 3.

Unlimited wild word sear ching

The normal behavior of thewild card search expansion is that each wild-carded term
will match a maximum of 50 words. If there are more than 50 words that match, the 50
most frequent wordsin the index will be used.

Todisable thisbehavior, set unlimited wild_words parameter to 1.
Ranking word maximum frequency:

Theignore_thresh parameter is expressed in one hundredths of a percent, for example,
1000 = 10%Any word that occursin theindex more frequently than this percentage
isnot counted for ranking purposes. The word is still counted for Boolean ranking.

Thisis a performance optimization. If thisvalueis set to be smaller than the default
(1000), ranked searches will run faster but theranking isless precise. If thevalueis set
higher than the default, the ranked search is dower, but the ranking is more precise.
Therangefor this parameter is 1- 1000.

Optional indexing features:

If you have no need for date ranking, date-range searching, or search-since features,
they can be disabled in the avs_parameter block options. All these features are
enabled by default. By selectively disabling some of these features, you can achieve a
smaller index size. To disable, set one or more of the following to O:

AVS OPTION_SEARCHSINCE

AVS OPTIONS RANKBYDATE

AVS OPTION_SEARCHBYDATE
Assumed character set:

The index supports three possible character sets. You can set the character set to one
of the following:

ISO LATIN1
ASCII8
UTF8

The default character set is1SO LATINL. Mixing character setsin an index is not
supported.

Initializing the avs_parameter Structure In the C API

To declare and initialize the avs_parameters structure to the default values, use the following
statement in your application:

avs_parameters_t myparms = AVS_PARAMETERS_INIT;
Useavs_paraneters_avsi _conpati bility toinitializetheavs_paraneters__t
structure when opening an AltaVista Search Intranet Index.

3-31

Advanced Concepts and Techniques

Modifying the Parameters in the C API

This example modifies each of the possible parameters by setting each one to its (already
initialized) default value. Change to different valuesif needed.

myparms.ignored_thresh = 1000;
myparms.chars_before_wildcard = 3;
myparms.unlimited_wild_words = O;
myparms.cache_threshold = 500000L;
myparms. indexformat = 0;"
myparms.options =
AVS_OPTION_SEARCHSINCE |
AVS_OPTION_RANKBYDATE |
AVS_OPTION_SEARCHBYDATE;
myparms.charset = AVS_CHARSET_LATIN1;
myparms.ntiers = 0;
myparms.nbuckets = 0;

Opening the Index
To open an index using the initialized and modified avs_parameters, use the following:

error = avs_open (&myparms, indexpath, mode, &handle);

3-32

A

Using the Sample Programs

This section describes the several sample programs provided with the AltaVista Search
Developer's Kit Version 2.6. The following figure displays the directory structure under the
source directory:

Samples Files Directories

avzh
avsi_compat h
avscvth

res Images AvsTole
avs_MTselarch G ::2623?112'%@'3 avs_sample_db icoo ’=,g|i$I avstol.dsp 'r::f;n:;rfh it
Eﬁng':pe'c e C‘pgp ave_sample_dbrc? SourceCode avstol daw vh_sample frs
’ avssearc:-h.cpp AxldxDig cpp AwsSdkException jav tclh AcvSearch frm
v hpp avs_sample_db.cpp Indlexarea avstclhim BraweseldxForm.frm
readme tet ave_gample_dbDig.cpp IndexSearch java avs_aample tol ResultF orm.frm
Avzeali.cpp Allkames Html readme td vh_sample. frm
crack.cpp jars sk AvsSdkException himl vh_sample vhp
StdAfx.cpp javs ask Index html -
avs_sample_db.dsp jarvs sk IndexSearch hml
AyldxDig h Package-javs sdk html
crack .h packages html
resource.h tree html arvsi_sampls .o
Stdafx b jarvadac bl -
rezource hm readme txt

Martheaind midk
avs_sample_db.rc
Reachie t:d

The ¢_sample directory contains a sample C program (avs_sample.c) that uses most of
the available procedures to build a smple text index and uses command-line querying.
It also includes a multi-threaded search command contained in a separate module
(avs_MTsearch.c). The cvitest.c module lets you test the conversion of afileto text.

The cpp_classes directory contains an example program (avs_sample.cpp) that
behaves similarly to the avs_sample.c program using one possible implementation of a
C++ API. ThisAPI isused in the dao_sample as well.

4-33

Using the Sample Programs

4-34

The dao_sample directory contains a database example that is specific to Windows
NT and uses Microsoft Foundation Classes (MFC) and Data Access Objects (DAO) to
build and search an index created from a Microsoft Access database.

Thejava_classes directory contains sample Java classes to present an Object Oriented
interface layered on top of the C API.

Thetcl_sample directory contains a sasmple Tcl application (avs_sample.tcl) smilar to
the avs_sample.c program.

The vb_sample contains a sample Visual Basic application (including a working
executable) that demonstrates the use of the Devel oper's Kit ActiveX control for
Windows NT.

The avs_sample directory contains a sample program that demonstrates how to use
the AltaVista Search compatibility APl with the AltaVista Search Intranet V2.3
product.

Only the C Language and Visual Basic APIs are supported for this release. The other sample
programs are used to demonstrate an implementation in the respective languages (Tcl, C++, or
JDirect).

Understanding the C Sample Program

This section isa quick summary of the avs_sample.c program, organized by typical tasks. For
information on compiling the programs, and using the command line tasks, refer to the section
Compiling and Linking the C Sample Program.

What the Sample Program Does

If you learn best by example, you can use this program as a starting point for coding your own
application. Y ou can find the sample filesin the directory in which you installed the developer's
kit. The sample programs are compiled for you and the executable files are located in the the
following directories:

unix/aix
unix/dunix
unix/linux_ix86
unix/solaris
win32/alpha
win32/ix86

Using the Sample Programs

Try some of the tasks listed bel ow.

Create an index from a set of text files.

Search the index you have created.

Perform a Boolean search using ranking terms.

Perform a multi-threaded search.

Count the word occurrences in the index.

Delete afile from the index.

Compact the index.

Creating an Index

Suppose you want to create an index containing all the words in a given set of text files. For the
UNIX platforms, the files you want to include in the index could be in a separate directory, so
they can beread from standard input. To read the files from standard input and pipe them to
your application, use the following command line:

Is *.txt | avs_sample -c newdoc -i <indexdir>

Another way to specify filesto be added to theindex isto create atext file (<fi | el i st >)
containing the list of files (using the absol ute path) to be indexed, one per line. Specify this text
file asfollows:

avs_sample -c newdoc -i <indexdir> -f <filelist>

where newdoc is the command and indexdir isthe path to the index directory (the index
directory must already exist). Asaresult, all thewordsin the text files are added to the index.
One document is created for each text file. Each file isidentified in the index by the name of
the text file.

On Microsoft Windows NT, from the MS-DOS level, you can create your index in the same
way aslong as thefiles you want to include are in the same directory as your sample program
and DLL files. Or you can put the location of the executable and DLL filesin your path. To
read the files from your index directory and pipe them to your application, use the following
command line:

> dir/b *.txt | avs_sample -c newdoc -i <indexdir>

Searching an Index

To perform a simple search of the index, use the following command line:

avs_sample -c search -i <indexdir> -q "<simple query expression>"

where indexdir is the pathname to the index directory, and <simple query expression> isthe
guery expression which may contain "+" and "-" filter expressions. For example, use the form

avs_sample -c search -i testdir -q "pizza \"deep dish\" +Chicago"

4-35

Using the Sample Programs

4-36

to search your index for Chicago, deep dish pizza. You can perform an advanced search by
using -b instead of -q in your command line.

Performing a Boolean Search with Ranking Terms

Ranking words determine the order of listingsin the results display. When you do not specify
any ranking words, AltaVista Search returnsthe resultsin no particular order. Ranking isavery
important way to ensure that the documents of most interest to you appear at the top of the
resultslist.

To rank matches, enter terms in the Ranking argument; otherwise, the results will appear in no
particular order. Y ou could enter words that are part of your query or enter new words as an
additional way to refine your search. For example, you could further narrow a search for
COBOL AND programming by entering advanced and experienced in the Ranking argument.

Note: If you areinterested only in a count of the number of documents that match your query,
you may not want to use ranking.

To perform a boolean search with ranking terms, use the following syntax:

avs_sample -c search -1 <index path> -b <boolean query> -q
<ranking terms>

where index path isthe full path name of the index directory, boolean query isthe query
expression using the Boolean form (AND, OR, NOT, NEAR, WITHIN), and ranking termsis
theterm or termsthat effect the ranking of results returned by the search. Documents that have
the most frequent occurrence of the specified ranking term or termswill be at the top of the
search results. For example:

avs_sample -c search -i indexdir -b "vegetable AND (NOT broccoli)"
-q "‘carrot"

Documents with the most frequent occurrences of the term "carrot” will be at the top of the
search results.

Restricting Advanced Searches by Date

You can restrict an Advanced Search to find only documents last modified during a specific
time frame. The date of the document is set by the application when the document is added to
the index.

When entering To and From dates, use the format dd/mmm/yy, where dd is the day of the
month, mmm is the name of the month, and yy is the last two digits of the year. Be sureto use
the name of the month instead of a number; this eliminates ambiguity between date formatsin
different countries. For example, use 09/jan/96.

If you omit the year when entering a date, the AltaVista assumes that the dateisin the current
year. If you omit both the year and the month and specify only numbers for days, the search
assumes the current month and year. For example, entering a From date of 09/jan indicates that
you want documents dated no earlier than January 9 of the current year. Entering a From date
of 09 indicates that you want documents dated no earlier than the ninth day of the current
month in the current year. To perform a boolean search with date ranges, use the following
syntax:

Using the Sample Programs

avs_sample -c search -i <index path> -b <boolean query with date
ranges>

where index path isthe full path name of the index directory, boolean query with date rangesis
the Boolean query expression including the date ranges which restrict the dates and determine
the results returned by the search. For example:

avs_sample -c search -i indexdir -b "vegetable AND (NOT broccoli)
[01/jun/97 - 31-jul-97]"
Only documents that fall within the date ranges are returned by the search results.

The date ranges are enclosed with square brackets ([]). Y ou can use the following formats for
dateranges:

dd/mmm/yy - dd/mmm/yy

dd/mmm/yyyy - dd/mmm/yyyy

mm/dd/yy - mm/dd/yy

mm/dd/yyyy - mm/dd/yyyy

dd/mmm/yy - (for documents modified on or after the specified date)

- dd/mm/yy (for documents modified on or before the specified date)

Performing a Multi-Threaded Search
To perform a multi-threaded search, use the following command line:
avs_sample -c mtsearch -i <indexdir> -q <queryfile>
Where queryfile is atext file containing a set of query strings which are processed by one of the

threads.

Counting Word Occurrences in Your Index

To count how many times aword occurs in the index, use the form:
avs_sample -c counts -i <indexdir> -q <word>
Deleting a Document from the Index

To delete a document from the index, use the following command:

avs_sample_cpp -1 index -c delete -d <docid>
Compacting an Index

To compact an index after you have made numerous additions and deletions, use the following
command:

avs_sample -c compact -i <indexdir>

4-37

Using the Sample Programs

Compiling and Linking the C Sample Program

The AltaVista Search Devel oper's Kit gives you the option of compiling your application to
have either single-threaded or multi-threaded capahilities. To compile and link your program
on any of the supported platforms, you must have included the appropriate header file in your
source code. The following table lists the additional files you need to compile, link and execute

your program:

Operating System

Files in local directory

The Unix platforms

avs.h
libavs26.a
or libavs26 r.a

Microsoft Windows NT

avs26.dil

or avs26 MT.dll

avsh

avs26.lib or avs26 MT.lib

The following table lists the commands and switches used in running the program:

Switches

Description

<boolean query string>

<command> One of newdoc, search,
genrank, counts, compact, delete, mtsearch
(with multi-threaded build only)

<docid>

<filename> file contains list of filesto
index

<index name>

Turn off detailed logging of queries for
mtsearch command

<query string> use query string for rank
only

<query file> file with query string(s) for
mtsearch command

<query string> use query string for rank
and selection

<sgarch since string>

<number of threads> for mtsearch
command (greeter than 0)"

4-38

Using the Sample Programs

Compiling on a Compaq Tru64 UNIX System

The following command compiles the file avs_sample.c and creates an executable called
avs_sample with the single threaded library:
cc -0 avs_sample avs_sample.c libavs26.a -Im

or with the multi-threaded library:

cc -DPTHREADS -pthread -o avs_sample avs_sample.c avs_MTsearch.c
libavs26_r.a -Im -Ipthreads

Compiling on Microsoft Windows NT
The following command compiles the fileavs_sample.c and creates an executable called
avs_sample.exe with the single threaded library:

cl avs_sample.c /DWIN32 /D _NDEBUG /D_CONSOLE /ML avs26.lib
or with the multi-threaded library:

cl /Feavs_sample.exe avs_sample.c avs_MTsearch.c
/DWIN32 /D_NDEBUG /DPTHREADS /D_CONSOLE /MT avs26_MT.lib

Compiling on Solaris and Linux Systems
You can compilethefile avs_sample.c and create an executable called avs sample with a
single-threaded library:
cc -0 avs_sample avs_sample.c libavs26.a —Im
or with the multi-threaded library:

cc -DPTHREADS -o avs_sample avs_sample.c avs_MTsearch.c
libavs26_r.a -lIpthreads —Im

Note: The indexing process opens many files. If the open file descriptor limit istoo low, your
program will abort on the Sun Solaris system. Set the descriptor limit to unlimited as follows:

limit descriptors unlimited (csh)
or
ulimit -n unlimited (sh)

Compiling on AIX Systems

You can compilethefile avs sample.c and create an executable called avs_sample with a
single-threaded library:

cc -0 avs_sample avs_sample.c libavs26.a —Ic

or with the multi-threaded library:

cc_r -o avs_sample avs_sample.c avs_MTsearch.c
libavs26_r.a -Ipthreads -Ic_r

4-39

Using the Sample Programs

Compiling and Linking with Document Converters

By default, the document converters are not compiled into the C sample program. To use the
converter AP, compile the sample program according to the platform-specific instructions
above with the following additions:

Compile with the symbol DOC_CONVERTERS defined:
/ DDOC_CONVERTERS (Windows NT) or - DDOC_CONVERTERS (UNIX)

Link with the library avscvt26.dll (Windows NT) or libavscvt26.a, libsc_da.so, and
libsc_ta.so (Unix)

Make sure that the document converter directory files are available at runtime. For
Windows NT, add the directory to the PATH environment variable. For UNIX, set the
environment variable LD_LIBRARY_PATH to this directory.

Note: The document conversion APl is not available on the AlX or Linux/Intdl platforms.

Using the Document Conversion Test Program

A new document conversion test program has been included with the product software. This
program invokes the document convertersto convert a specified file to text. The program,
cvttest.exe orcvttest canbefoundin the platform specific directory. The sourcefile
cvttest.c canbefoundinthesour ce/ c_sanpl e directory.

Understanding the Database Example

The sampl e database application (dao_sample\avs sample_db.cpp) introduces the concepts and
techniques associated with using the AltaVista Search Devel oper's Kit to index a Microsoft
Access database. This example hasthe following characterigtics:

Runs on Microsoft Windows NT.

Uses Microsoft's Visual C++ Version 5.0.

Uses the sample Devel oper's Kit C++ APl implementation (cpp_classes).
Access to database through Data Access Objects (DAO).

Sample Microsoft Jet Database created in Microsoft Access.

Applications using other data access methods, such as, Open Database Connectivity (ODBC)
would involve similar design decisions with dightly different data exchange characteristics.

The sampl e database application demonstrates the following tasks:

Creating an index from a database

Searching the generated index
Retrieving data from the database as a result of a search

Deleting arecord from the database and the index

Creating the Index

The application builds an index from the database creating one document for every record of a
given database table. As each document is added to the index, a unique document identifier is
generated to allow the original database record to be retrieved following a successful search.

4-40

Using the Sample Programs

For simplicity, this sample assumes one database per index. In addition, only the tables (versus
gueries, forms, reports) can be indexed since the tables represent the full compliment of datain
the database. With these limitations, the document id is constructed from the name of the table
and the primary key value of the record. Unlike record positional information, the primary key
information in atable remains constant across sessions. Additional record specific information
not subject to searchesisincluded in the document data.

Searching the Index

Once the document id has been constructed, the fields of the record are indexed by adding them
to the document. In order to allow field-specific searches, afield identifier is added along with
the contents of thefield in theindex. A primitive user interface takes a user specified query
string and searches the index. Search results are displayed in alist box to alow the user to
select specific document from the index.

Retrieving Data from the Database

After the user selects one of the documents returned from a search, the corresponding database
record can be displayed. This part of the application takes the record-specific information
stored in the document id and document data to locate the appropriate record in the appropriate
table in the database.

Deleting a Document

The sampl e database application also allows you to delete a sel ected document from the index
and the corresponding record from the database provided the record does not have relationships
with other recordsin the database. This process uses the same method of retrieving the database
record from the document id and document data stored in the index.

Synchronizing the Index with the Database
To keep the index synchronized with the contents of the database, use one of the following
methods:

1. If al fiddsin all database tables are kept in the index, keeping theindex current is
simply a matter of periodic reindexing. Reindexing the database will behave in the
same manner as a special update procedure.

2. If only selected fields of selected tables are kept in the index, an update procedure
would need to use information about the contents of the index for selective updates.
Such information could be stored in afile upon index creation.

The sample database application and al files used to build and run it can be found in the
dao_sample subdirectory of the AltaVista Search Devel oper's kit. See the ReadMe.txt files for
an outline of the filesincluded with this sample. See the source code comments for more details
on the how the application works.

This sample database application can be run on a non-development system provided the
following files are present:

MSVCRT.DLL
MFC42.DLL

DAO and the Microsoft Jet Database Engine (in dao\disk1\setup.exe)
4-41

Using the Sample Programs

4-42

OLE Automation (in oadist.exe) if requested during DAO setup.
Theseitems areincluded on the kit in the msvc directory tree.

The DAO setup has been redistributed from the VC++ V5.0 CD and the OLE Automation
setup can be downloaded from Microsoft.

See articles @167523 and @164529 from Microsoft Technical Support for more information

Sample Java Application

The Devel oper's Kit contains a sample JDirect implementation. The sample Java classes
present an object oriented (OO) interface layered on top of the the C API. The Java sample
directory contains documentation and a working sample.

Tcl Sample Application

You can usethe Tcl programming language on multiple platforms to access the AltaVista
Search Developer's Kit. The kit includes an adaptor module (avstcl) that implements the
AltaVista Search API as aloadable Tcl extension. It has been tested on NT with Tcl Version
8.02 and using Microsoft Visual C++ 5.0.

Torun on an NT x86 system:
1. Install Tcd using tcl80p2.exeif you do not already have it installed on your system.
2. Usethe supplied avstcl MSVC project files to build the extension.

3. IntheTd shdl, acommand likel oad r el ease/ avstcl.dl | avs will load the
extension (see avs_sample.tcl).

To run the application use the following command line:

tclsh80 avs_sample.tcl -i index -c search -q "word"

Visual Basic Sample Application

You can use Visual Basic on Windows NT platforms to access the AltaVista Search
Developer's Kit. The kit includes an ActiveX control embodying the interface to AltaVista
Search (avs26X_mt.dll). The control can be found in the ix86 or alpha directory after the
installation.

In addition, this kit includes an ActiveX control for the document converters called
avscvt26X_ mt.dil.

For moreinformation on this sample program, see the Readme.txt file included in the
wi n32\ sour ce\ vb_sanpl e directory.

AltaVista Search Intranet Compatibility APl Sample

You can now add or create an index compatible with the AltaVista Search Intranet V2.3
(AVSI) product. The Developer's Kit AV Sl compatibility API lets your application read data
from and write data to indexes created by AV SI.

The C APl versions of the AV Sl compatibility components are called avsi 26_nt . dl | and
I i bavsi 26_r. a for Windows NT and Unix, respectively. Please see the includefile

avsi _conpat . h (source directory) and the sample codein avsi _sanpl e. ¢
(sourcelavsi_sample directory) for information on how to use the C API.

Using the Sample Programs

The AV Sl index fileson UNIX are owned by daemon. If documents are added to the AVS|
index through the Devel oper's Kit, make sure that the documents are still owned by daemon
before restarting AVS or it will have problems reading the index.

Note: The AltaVista Search Intranet Compatibility APl is not available on the AIX or
Linux/Intdl platforms.

4-43

5

C Programmer's Reference

This reference section provides a description of the C language procedures, data structures, and
status codes provided by the AltaVista Search Developer's Kit.

Contents
Alphabetical Listing of Access the Index Data Structures Document
the C Language Converter API
Procedures
Updating the Index Searching the Status Codes AVSI

Index Compatibility API

5-45

C Programmer’s Reference

avs_adddate

Indexes the supplied date in standard format at the indicated location.
C Synopsis

AVSAPI (i nt) avs_adddate (
IN avs_idxHdl _t idx,/* Index handl e (from avs_open) */

INint yr,/* date to add */
INint no,/* date to add */
INint da,/* date to add */
INlong startloc/* |ocation */
);
Arguments
idx Theindex handle.
yr Integer that specifies the year.
mo Integer that specifies the month.
da Integer that specifiesthe day.
startloc Location in the document for the date.
Description

The avs_adddate procedure indexes the supplied date in standard format at the indicated location. Dates added
with avs_adddate can beretrieved by using range searches. Note that the date returned with a search result isthe
date supplied by avs _setdocdate not avs_adddate.

Return Values
AVS OK or an error code.

See also
avs addfield

avs addword

avs setdocdate

5-46

C Programmer’s Reference

avs_addfield

Marks a set of locations as belonging to afield.

C Synopsis
AVSAPI (i nt) avs_addfield (
I N avs_idxHdl _t idx, /* Index handle (from avs_open) */
I N const char *pFnane, /* name of field (no spaces allowed) */
IN long startl oc, [* first location of field */
I'N [ong endl oc [* first location AFTER field */
)
Arguments
idx Theindex handle.

pFname String that specifies the name of the field to be added to the index.
startloc Location of the first word in the field.
endloc Location of the first word that follows the field.

Description

The avs_addfield procedure marks a set of locationsin a document as belonging to afield. The startloc and
endloc arguments define the boundaries of the field. Application users can submit queries for specific contents of
the named field, using the format fieldname:value.

Return Values
AVS OK or an error code.

See also
avs addword

5-47

C Programmer’s Reference

avs_addliteral

Adds a single word exactly as entered to a document index.
C Synopsis

AVSAPI (int) avs_addliteral (
IN avs_idxHdl _t idx, /* Index handle (from avs_open) */
I N const char *pWrd, /* word to add */
INlong loc/* location wthin document */

)
Arguments

idx Theindex handle.

pWord Single string that specifies the word to add.

loc Location in theindex of where to add the string to the index.

Description

The avs_addliteral function adds a single word without interpretation to a document index.This function does
not scan the literal string in any way, but rather adds it to the index asis. Use with caution or not at al, as words
added thisway are possibly not searchable with the standard query procedures.

To perform a search when the literal string you are looking for contains special characters (for example, the
forward dash (/)), you can use curly braces({}) in the Boolean (advanced) query string asin the following
example: {cnn/xyz}. All characters between the matching curly braces are treated as a word, except the asterisk
(*) which till works as a wildcard.

Note: Words starting with a non-a phanumeric character are reserved for internal use.

Return Values
Thisfunction returns AVS _OK or an error code.

5-48

C Programmer’s Reference

avs_add _ms_callback
Adds a makestable callback function.

C Synopsis
AVSAPI (int) avs_add_ns_cal | back (
IN avs_idxHdl _t pHdl, /* ptr to index handle */
INint (*func) (avs_idxHdl _t, void *), [/* callback function */
IN void *data /* data to pass to callback function */
)
Arguments
pHdl Pointer to theindex handle.
(*func) Callback function.
*data Data to pass to the callback function.
Description

Theavs add_ms _callback procedure is a synchronization point provided by AltaVista Search to the application
during the processing of an avs_makestable call. The default AltaVista Search behaviour isto wait for any other
search processes that might have the index open for aread operation to close the index before continuing; thisis

to avoid the potential for inconsistent search resultsin any of those other processes. This behaviour is not needed
if the application isall in one process.

If the application providesits own ms_callback procedure through the avs add_ms callback call, AltaVista
Search will call this procedure instead of performing its default synchronization processing. This call is made
after the newly indexed data has been written to disk but before the new index version becomes available to any
other threads.

Return Values
AVS OK or an error code.

Seealso

avs makestable

5-49

C Programmer’s Reference

avs_addvalue
Indexes the supplied value at the indicated location.

C Synopsis

AVSAPI (int) avs_addval ue (
IN avs_idxHdl _t idx,/* Index handle (from avs_open) */
IN const avs_valtype_t valtype,/* type and */
I N unsigned |ong value,/* value to add */
INlong loc/* |ocation */

Arguments

idx Theindex handle.

valtype Thevaluetype.

value The value to be indexed.

loc Thelocation in the document.
Description

The avs_addvalue procedure indexes the supplied value at the specified location in the index.

Return Values
AVS OK or an error code.

Seealso

avs define valtype

5-50

C Programmer’s Reference

avs_addword

Adds words to the document index.
C Synopsis

AVSAPI(int) avs_addword (
IN avs_idxHdl_t idx, /* Index handle (from avs_open) */
IN unsigned char *pWords, /* words to add */
IN long loc,/* location to add words */
OUT long *pNumWords /* number of words added */

Arguments

idx Theindex handle.

pWords Pointer to the words to add to the index.
loc Location value to assign to the first word.
*pNumWords Number of words added.

Description

The avs_addwor d procedure adds words to the index. A word is defined as a contiguous string of alphanumerics,
bounded by non-alphanumerics (like spaces and special characters), as defined in the 1SO Latin-1 standard.

It should be called by afilter procedure, which prepares a block of text for indexing. The avs_addword
procedure returns the number of words added to the index. Usually, the next call to avs_addword will be given a
gtarting location which is* pNumWords (the number of words added) higher than the last call.

Return Values
AVS OK or an error code.

Seealso
avs adddate

avs addfield
avs addliteral
avs addvalue

5-51

C Programmer’s Reference

avs_buildmode

Optimizes your index for building or adding documents.
C Synopsis

AVSAPI (i nt) avs_buil dnode (
IN avs_idxHdl _t idx /* Index handle (from avs_open) */

);
Arguments

idx The handle to the opened index.

Description

The avs_buildmode procedure optimizes the specified index for building or adding to the index. Querying
during this state would degrade the response to the query. This procedure could be called from your application
for those instances when you want to build an index and users would be unlikely to query the index. The new
mode takes effect immediately. This state of the index will be retained for the next time the index is opened, if a
call toavs makestable or avs_compact is made.

Return Values
AVS OK or an error code.

Seealso

avs_compact
avs makestable

avs _newdoc

avs querymode

5-52

C Programmer’s Reference

avs_buildmode_ex

Optimizes your index for building or adding documents, and also sets the number of tiers.
C Synopsis

AVSAPI (i nt) avs_buil dnode_ex (
IN avs_idxHdl _t idx, /* Index handle (from avs_open) */
INint ntiers /* max tiers to use */

);
Arguments

idx The handle to the opened index.

ntiers The maximum number of tiersto use.

Description

Theavs_buildmode_ex procedure optimizes the specified index for mixed indexing and searching the index by
setting the maximum number of tiersto use. Thetiers are tunable for special purposes within anominal range
from 4-500. Smaller values are appropriate for more searching while the larger values for more indexing.

Thetiers parameter value determines the maximum number of sets of buckets to which the index can grow
during operations that add, delete, or update the index. Each call to avs makestable creates a new tier in the
index, and callsto avs_compact or avs_compact_minor are then used to reduce the tiers again. When building a
very largeindex, it is better to have alarger value asit reduces the number of compactions needed during
building. However, query operations may take longer when moretiers arein use because there are more index
files to examine for each index entry.

Buckets are the hash modulus for splitting the index by word. This parameter value determines the number of the
index files across which index entries are spread (by hashing). If this number isincreased, the number of index
filesisincreased but the size of the individual files should be smaller

The maximum number of files used by the index is approximately 4* buckets*tiers. The index uses fewer
resources when these numbers are smaller, both in terms of the number of files used and the number of files the
index has open at once, which could effect memory usage and other performance metrics.

Return Values
AVS OK or an error code.

Seealso

avs_compact
avs makestable

avs _newdoc

avs querymode

5-53

C Programmer’s Reference

avs_close

Closes a specified index.
C Synopsis

AVSAPI (i nt) avs_cl ose (
I N avs_idxHdl _t idx /* Index handle (from avs_open) */

);
Arguments

idx The handle to the opened index.

Description

The avs_close procedure closes the specified index and releases all resources.

Return Values
AVS OK or an error code.

See also
avs makestable

avs _newdoc

avs _open

5-54

C Programmer’s Reference

avs_compact

Causes one level of compaction on the index.
C Synopsis

AVSAPI (i nt) avs_conpact (
IN avs_idxHdl _t idx, /* Index handle (from avs_open) */

QUT int * bMre_p /* TRUE iff nore conpaction indicated */
)
Arguments
idx Theindex handle.
* bMore p Integer value returned to indicate whether more compaction is necessary (1 if yes, O if no).
Description

The avs_compact procedure causes one or more levels of compaction on the index. If the returned value of
bMore_pisO0, the compaction is complete. If the returned valueis 1, call the avs_compact procedure again to
further compact the index.

Y ou should compact theindex periodically or after a series of updatesis complete. Compacting the index
improves subsequent query performance and frees the space used by documents that have been deleted. It is
possible to submit search queriesto the index (in other threads) whileiit is being compacted, but you cannot add,
update, or delete information until compaction is complete.

Return Values

Value Returned Description

0 The compacting of theindex is complete.
1 Further compacting of the index is required.
See also

avs compactionneeded

avs _compact_minor

avs makestable

5-55

C Programmer’s Reference

avs_compactionneeded

Returns a non-zero value if the index needs compaction.
C Synopsis

AVSAPI (i nt) avs_conpacti onneeded (
IN avs_idxHdl _t idx /* Index handle (from avs_open) */

);
Arguments

idx Theindex handle.

Description

The avs_compactionneeded returns non-zero valueif the index needs compaction. When writing your
application, it isreasonableto test if compaction is needed after each call to avs makestable. If compaction is
needed, your application should perform an avs_compact_minor loop until no more compaction is needed. If
you defer the compaction too long, then eventually the makestable process will get infinitely slow.

Return Values

Returns O or a non-zero integer

Seealso

avs_compact
avs makestable

5-56

C Programmer’s Reference

avs_compact_minor

Causes compaction of the index with as little impact on system resources as possible.
C Synopsis

AVSAPI (i nt) avs_conpact _m nor (
IN avs_idxHdl _t idx, /* Index handle (from avs_open) */

QUT int * bMre_p /* TRUE iff nore conpaction indicated */
)
Arguments
idx Theindex handle.
* bMore p Integer value returned to indicate whether more compaction is necessary.
Description

Theavs_compact_minor procedure causes one or more levels of compaction on the index but without
recovering space from deleted index entries. Use this procedure when the effects of regular compaction would be
detrimental to your system resources. If the returned value of bMore_p is 0, the compaction is complete. If the
returned valueis 1, call theavs _compact_minor procedure again to further compact the index.

Y ou should compact theindex periodically or after a series of updatesis complete. Compacting the index
improves subsequent query performance. It is possible to submit search queriesto theindex whileit is being
compacted, but you cannot add, update, or delete information until compaction is compl ete.

Return Values

Value Returned Description

0 The compacting of theindex is complete.
1 Further compacting of the index is required.
See also
avs_compact
avs makestable

5-57

C Programmer’s Reference

avs_convert_file2html

Converts a document to an HTML file.
C Synopsis

AVSAPI (int) avs_convert_file2htm (

IN char *p_docpath, /* pathname to docunent */

QUT char *p_htm path, /* pathnane to a file to contain converted HTM
*/

QUT int *pErr /* converter error */
)
Arguments
*p_docpath Pathname to the document.

*p_htmlpath Pathname to afile to contain the converted HTML.

*pErr Converter error code.

Description

Theavs_convert_filezhtml procedure converts a document to HTML. Y ou must specify the pathname to the
document to be converted as well as specify a pathname to the file which isto contain the converted text. At this
time, the only file type that is able to be converted to HTML is the Adobe PDF file.

Return Values
AVS OK, AVS CVT_ERRor AVS CVT_UNSUPTYPE.

Seealso

avs convert file2text

avs convert init

5-58

C Programmer’s Reference

avs_convert_file2text

Convert a document to atext file.
C Synopsis

AVSAPI (int) avs_convert_file2text (
IN char *p_docpath, /* pathname to docunent */
QUT char *p_textpath, /* pathnane to a file to contain converted text

*
/ QUT int *pErr /* converter error code */

)

Arguments

*p_docpath Pathname to the document.

*p_textpath Pathname to a file to contain the converted text.

*pErr Converter error code.

Description

Theavs _convert_file2text procedure converts a document to text. Y ou must specify the pathname to the
document to be converted as well as specify a pathname to the file which is to contain the converted text. The
document contents are analyzed before conversion to determine the document type.

Note: The file containing the converted text may contain no line ending characters.

The file types which are supported for conversion arelisted in the following table: ¢_ref.htm - doctypes

File Type
Access

Adobe Acrobat Portable Document
Format

Adobe lllustrator

Adobe PostScript, Encapsulated
PostScript

Ami Draw
AMI/AMI Professional

AutoCAD Drawing Interchange
Format

AutoCAD Native Drawing Format
AutoShade Rendering File Format
batch file

bitmaps (including OS/2 DIB)
CCITT Group 3 Fax

Computer Graphics Metafile

Versions
through 2.0
2.1,3.0

through 6.0

Level 2

through 3.1
through 13

12 and 13

ANSI, CALS, NIST,

Valid Extension(s)
MDB
PDF

Al
PS, EPS

SDW
SAM
DXF

DWG

RND

BAT

BMP, RLE, ICO, CUR, 0S2
FXS

CGM

5-59

C Programmer’s Reference

5-60

File Type

Corel Clip Art Format
CorelDraw
DataEase

dBASE

dBXL

DCX (multi-page PCX)
DIGITAL WPSPlus
DisplayWrite 2 & 3
DisplayWrite 4 & 5
Enable

executables

First Choice
FoxBase

FrameMaker (including vector and
raster format)

Framework

Freelance

GEM Paint

Graphics Environment Manager
Metafile

Graphics Interchange Format

GzZIP

Harvard Graphics

Hewlett Packard Graphics Language

HyperText Markup Language

IBM Final Form Text

IBM Graphics Data Format
IBM Picture Exchange Format
IBM Revisable Form Text

IBM Writing Assistant

JPEG

JustWrite

Kodak Photo CD

Versions
3.0

through 7.0
4.X

through 5.0
1.3

through 4.1
all versions
through release 2.0
3.0,4.0,45
through 3.0
21

through 5.0

3.0

1 and 2 (Windows); 96
(Windows 95); 2.0
(0s/2)

bitmap and vector

2.X and 3.X
2.0
through 3.2

all

1.0

1.0

all

1.01

all

through 3.0
1.0

Valid Extension(s)

CMX

CDR, CDW
DBA, DBM
DBF

DBF

DCX

WPL, DX
TXT

DOC

300, WPF, SSF, DBF
EXE, DLL
SS, FOL
DBF

FMV

FW3
PRZ, PRE

IMG
GEM

GIF

gz

CHT, CH3
PGL

HTML, HTM, ASP, SHTML,

NSF

FFT

GDF

PIF

RFT

IWA

JPG, JPEG, JIFF
w

PCD

File Type
Legacy
Lotus 1-2-3, 1-2-3 Charts

Lotus Symphony
Macintosh standard raster
MacPaint

MacPict

Manuscript

MASS11

Micrografx Designer

Microsoft Windows Write

Microsoft Word

Microsoft WordPad

Microsoft Works

Microsoft Excel

Microsoft PowerPoint

Microsoft Rich Text Format
Mosaic Twin

MultiMate

Navy DIF

Nota Bene

Office Writer

Paradox

PC-File Letter

PC Paintbrush
PFS:Professional Plan
PFS:Write

PIC (Lotus)

Portable Network Graphics Internet
Format

Versions
through 1.1

through 97 (DOS and
Windows)
through 2.0 (0OS/2)

1.0, 1.1 and 2.0

through 2.0
through 8.0

3.1 (Windows)
6.0 (Windows 95)

through 3.0

through 6.0 (DOS)
97 (Windows)

all

through 2.0 (DOS)
through 4.0 (Windows)

2.2 through 7.0
(Windows)
97 (Windows 95)

through 7.0 (Windows)
97 (Windows 95)

through 2.0
25

through 4.0

all

3.0

4.0 through 6.0

through 4.0 (DOS),
through 1.0 (Windows)

through 5.0 (File+
Letter, through 3.0)

1.0
A, B,and C

1.0 (non-LZW
Compression)

C Programmer’s Reference

Valid Extension(s)
CHP

WKU, WK1, WK3, WK4, WKS5,
WKG6

WR1

PICT1, PICT2

MAC

PCT

DOC

AA4, AA5, AAG, AA7, AA8
DRW, DSF

WRI
DOC

DOC
WPS, WKS, WDB, WCM

XLA, XLC, XLM, XLS, XLT,
XLW

PPT

RTF

WKU

DOC, DOX, FNT, FNX
DIF

NB

ow4

DB, DB3

LTR

PCX
TID
PFB
PIC
PNG

5-61

C Programmer’s Reference

5-62

File Type

Professional Write

Professional Write 2

Q&A

QuattroPro

R:BASE

Reflex
Samna Word
SmartWare Il
Sprint

Standard Generalized Markup
Language

Sun Raster File Format
SuperCalc 5

TAR

text files

TGA (TARGA)

TIFF Format

TIFF CCITT Group 3 & 4
Total Word

Viseo

Volkswriter 3 & 4

VP Planner 3D

Wang PC (IWP)
Windows Metafile

WordMARC

WWordPerfect
WWordStar

XX-Windows Bitmap

XX-Windows Pixmap

Versions

through 2.1;
1.0 (Plus)

2.0 (DOS)

3.0 (Windows)
through 2.0
(database)

through 5.0 (DOS)

through 7.0 (Windows)

through 3.1;
1.0 (System V)

2.0

through IV+
1.02
through 1.0

4.0

ASCII, ANSI

through 6.0

1.2
through 1.0
1.0
through 2.6

throthrough Composer

Plus

tthrough 7.0

tthrough 7.0 (DOS);
through 3.0 (WordStar

2000 for DOS);
1.0 (Windows)

Valid Extension(s)

PW1, PWP

22
QA, QW, DTF

WQ1, WB1, WB2

RBF

R2D

SAM

DOC, DB, WS
SPR

SGML

SRS
CAL

tar

T
TGA

TIF, TIFF
TIF, TIFF
T™W

VSD
VW4
WKS
IWP
WMF
WWMC

WWPD, WPG, WPF, WP5
WWS, WSD, WS2, WS4, WS6

XXBM
XXPM

C Programmer’s Reference

File Type Versions Valid Extension(s)
XX-Windows Dump --- XXWD
ZZIP file PPKWARE through Z71P

2.04g

Return Values
AVS OK

AVS CVT_ERR
AVS_DICTIONARY_ERR

Seealso

avs convert filezhtml

avs convert init

5-63

C Programmer’s Reference

avs_convert_init

Initializes the document converters.
C Synopsis

AVSAPI (int) avs_convert_init (
IN avs_convert_parans_t *p_parans /* converter paraneters */

Arguments

*p_params Converter parameters.

Description

Theavs_convert_init procedureinitializes the document converters. See avs convert params for more
information.

Return Values
AVS OK

Seealso

avs convert filezhtml

avs convert file2text

5-64

C Programmer’s Reference

avs_count
Enumerates all the words beginning with a specified prefix in the index and, for each, how many timesit occurs.
C Synopsis

AVSAPI(int) avs_count (

IN avs_idxHdl_t idx, /* Index handle (from avs_open) */

IN const char* pWordprefix, /* first word to find (>=) (may be NULLSTRING) */

OUT avs_countsHdl_t *pCountsHdl /* ptr to counts handle
(used with avs_countNext) */
)

Arguments

idx Theindex handle.

pWordprefix Pointer to aword or portion of aword. All words that begin with this character string are
returned, one at atime, through the avs_countnext procedure.

pCountsHdl Pointer to the counts handle.

Description

Theavs_count procedureis used in conjunction with avs_countnext to enumerate index entries that match the
specified word or prefix.

The count is not adjusted for deletions if they have occurred since the last time the index has been compacted.

To enumerate the entire contents of the index, use a null value for the pWordprefix argument. This procedure will
return a count for all index entries including those that have been deleted.

Word counting is able to be used with wildcards. Y ou could previoudy enumerate the index entries by counting
the occurrences of abc in an index and the occurrences abc would be returned. Now you can enumerate the
occurrences of abc*d in the index, and the number of occurrences of all the words that start with abc, followed
by some character, and ending with d would be returned. The wildcard characters ?, *, and ** can be used to
represent 1, 0to 5, and O to unlimited characters, respectively.

Return Values
AVS OK or an error code.

Seealso

avs_countnext

5-65

C Programmer’s Reference

avs_count_close

Ends a count request and frees all ocated resources.

C Synopsis
AVSAPI (i nt) avs_count _cl ose (
IN avs_count sHdl t count sHdl /* counts handle */
);
Arguments
countsHdl The counts handle.
Description

Theavs_count_close procedure closes a count request. After all callsto avs_countnext are complete, call
avs_count_close to release the resources allocated for the count.

Return Values
AVS OK or an error code.

Seealso

avs_count

avs_countnext

5-66

C Programmer’s Reference

avs_count_getcount

Retrieves the number of word occurrences corresponding to the most recent call to avs_countnext.
C Synopsis

AVSAPI (unsi gned | ong) avs_count _getcount (
IN avs_countsHdl t countsHdl /* counts result handle */

);
Arguments

countsHdl The counts handle.

Description
Theavs_count_getcount procedure retrieves the number of word occurrences corresponding to the most recent
call to avs countnext.

Return Values

The number of occurrencesin the index of a word matching the specified word or prefix.

Seealso

avs_count

avs count_getword

avs_countnext

5-67

C Programmer’s Reference

avs_countnext

Retrieves the first or next index entry matching the word or prefix specified in the avs_count procedure.

C Synopsis
AVSAPI (i nt) avs_count next (
IN avs_count sHdl t count sHdl /* counts handle (fromavs_count) */
);
Arguments
countsHdl The counts handle from avs_count.
Description

The avs_countnext procedure retrieves the next (or first) index entry that matches the prefix specified in
avs_count. The procedures avs_count_getword and avs_count_getcount return the actual word and the number
of timesit occursin the index, respectively. The procedure returns AVS_ NOMORE_WORDS when there are no
more matching words.

Return Values
AVS OK or AVS NOMORE_WORDS.

Seealso

avs_count

avs_count_getcount

avs count_getword

5-68

C Programmer’s Reference

avs_count_getword

Retrieves the word corresponding to the most recent call to avs_countnext.
C Synopsis

AVSAPI (char *) avs_count _getword (
IN avs_countsHdl t countsHdl /* counts result handle */

);
Arguments

countsHdl The counts result handle.

Description
Theavs_count_getwor d procedure retrieves a pointer to the word corresponding to the most recent call to
avs countnext.

Return Values

Pointer to the word corresponding to the most recent call to avs_countnext procedure. This pointer isonly valid
until the next call to avs_countnext.

Seealso

avs_count

avs_count_getcount

avs_countnext

5-69

C Programmer’s Reference

avs_cvterrmsg

Returns the pointer to the error message text corresponding to a document converter error code.
C Synopsis

AVSAPI (char *)avs_cvterrnsg(int code); /* copies error message text as
in conments above */

Arguments

char The pointer to the error message text.

Description

The avs_cvterrmsg procedure returns the pointer to the error message text corresponding to a document
converter error code. It isused to trand ate any non-zero status codes returned by any of the conversion
procedures to a printable string (English).

Return Values

Pointer to the error message text corresponding to a document converter error code.

Seealso

avs_cvterrmsg_copy

5-70

C Programmer’s Reference

avs_cvterrmsg_copy

Copies the error message text to a buffer.
C Synopsis

AVSAPI (voi d) avs_cvterrnsg_copy(int e, char * buf, int bufsiz);
Arguments

buf Buffer for the error message text.

Description

Theavs_cvterrmsg_copy procedure copiesthe error message text to a buffer.

Return Values

None.

See also
avs cvterrmgg

5-71

C Programmer’s Reference

avs_default_options

Initializes search options to default values.
C Synopsis

AVSAPI (voi d) avs_default _options (
QUT avs_options_p_t pOptions /* PTRto avs_options_t structure to be
initialized */

Arguments

pOptions Pointer to the avs_options_t structure to be initialized.

Description

The avs_default_options procedure initializes search or query options to the default values. The default values
for search options are:

The maximum number of documents returned from a search is 32,000.
The additional query option of AVS OPT_FLAGS RANK_TO_BOOL.
ISO Latin 1 isthe default character set.

Return Values
AVS OK or an error code

Seealso

avs search

5-72

C Programmer’s Reference

avs_define valtype

Defines a new value type for adding searchable values, and ranking val ues.

C Synopsis
AVSAPI (int) avs_define_valtype (
I N const char * nane, /* up to 10 characters
I N unsigned long mnval, /* mninumvalue - zero recomended

I N unsi gned | ong maxval,
I N unsi gned | ong (*makeval) (char *),
QUT avs_valtype_t * valtype_p

)
Arguments
name String that contains the name of the value type (By default, the maximum name length is 10
characters).
minval Long with the minimum value of the value type, set to zero (0) when defining ranking types.
maxval Long with the maximum value of the value type.
makeval Procedure to convert string to value,
* valtype p Returned pointer to the new value type.

Description

The avs_define_valtype procedure lets you define your own value type, for example, the value type lines (to
count the number of lines per document). A searchable value or aranking value of this type can be added to a
document. With the type name, you also must supply the lowest to the highest possible values. In your filter
application, usea call to avs_setrankval procedureto set arank value for each document in theindex. Use a call
to the avs_addvalue procedure to set a searchable numeric value.

If you expect a user's search terms to be something other than an integer, for example, a part number that may
contain alpha-numeric characters, you must supply a makeval function that can convert the search string into an
integer value.

The avs_define_valtype procedureis an application-wide procedure and, therefore, effects all the indexes that
are open. You must call avs_define_valtype in your main thread before you open the index. Call the
avs release valtypes procedure after the last call to avs_close to release the values.

Return Values
AVS OK or an error code

See also

avs addvalue avs define valtype multiple
avs lookup valtype avs release valtypes

avs search_genrank avs setrankval

5-73

C Programmer’s Reference

avs_define valtype _multiple

Defines a value type to be used for filtering on multiple non-zero values.

C Synopsis
AVSAPI (int) avs_define_valtype nultiple (
IN const char * nane, /[* up to 10 characters
I N unsigned long mnval, /* mninmmvalue - nust be zero
I N unsi gned | ong maxval, /* maxi mum val ue
IN int nunval ues, /[* maxi mumno. of multiple filtering val ues
I N unsi gned | ong (*makeval) (char *), /* function to convert buffer to

nuneric val ue
QUT avs_valtype_t * valtype_p
);

Arguments

name String that contains the name of the val ue type (the maximum name length is 10 characters).
minval Long with the minimum value of the value type set to zero (0).

maxval Long with the maximum value of the value type.

numvalues Maximum number of multiple filtering values.

*makeval A function to convert the buffer to a numeric value.

* valtype p Returned pointer to the new value type.

Description

Theavs_define_valtype multiple procedure lets you define your own value type to add a set of valuesto a
document. Subsequently, these values can be used to filter search results. With the type name, you also must
supply the minimum to maximum range possible for values. The numval ues parameter determines the maximum
number of multiple ranking values allowed for this valtype for each document.

In your filter application, use a call to avs_setrankval procedure to set each value for the document.

If you expect a user's search terms to be something other than an integer, for example, a part number that may
contain alpha-numeric characters, you must supply a makeval function that can convert the search string into an
integer value. Multiple valuefilters are designed to work with non-zero values only.

Theavs_define_valtype multiple procedure is an application-wide procedure and, therefore, effects all the
indexesthat are open. You must call avs define_valtype multiple in your main thread before you open the
index. Call theavs release valtypes procedure after thelast call to avs_close to release the values.

Return Values
AVS OK or an error code

Seealso

avs define valtype-

avs lookup valtype

5-74

C Programmer’s Reference

avs release valtypes

avs search genrank

avs setrankval

5-75

C Programmer’s Reference

avs_deletedocid

Marks the specified document for deletion.

C Synopsis
AVSAPI (i nt) avs_del et edoci d (
I N avs_idxHdl _t idx, /* Index handle (from avs_open) */
I N const char* pDoci d, /* Document Id */
QUT int* pCount /* nunmber of docunents found/del eted */
)
Arguments
idx Theindex handle.
pDaocid String that identifies the document (limited to 120 bytes and case sensitive).
pCount The location to which the number of documents found and marked for deletion is returned.
Description

The avs_deletedocid procedure marks for deletion all documents with a specified docid (if any exist). If there are
any documents with the specified docid in the pending document set (those documents added since the last call
to avs makestable), an error (AVS _DOC_EXISTYS) isreturned and no documents are deleted. The number of
documents that are found is returned in the pCount argument.

For the documents to actually be deleted, you must call the avs makestable procedure. If you insert the call to
avs_makestable immediately after the avs_deletedocid procedure, the deletion will be effective immediately.

The document ID string comparison is case-sensitive.

Return Values
AVS OK or an error code

Seealso

avs search

avs search genrank

5-76

C Programmer’s Reference

avs_enddoc

Terminates the sequence of calls for adding a document to the index begun by the avs_startdoc procedure.
C Synopsis

AVSAPI (i nt) avs_enddoc (
IN avs_idxHdl t idx

);
Arguments

idx Theindex handle.

Description

The avs_enddoc procedure terminates a sequence of calls for adding a document to the index by the
avs_startdoc procedure.

Theavs startdoc/avs_enddoc calls are an alternative to the use of avs_newdoc and are used with applications
like Java and Visual Basic. Call avs_startdoc with the same arguments as the avs_newdaoc procedure with the
exception of thefilter function and its argument. Thefirst location available in the index for the new document is
returned through the pStartLoc argument. Usethisin the first call to the avs_addword procedure or similar kinds
on procedures. When you are finished adding document contents, call the avs_enddoc procedure to terminate the
document.

After acall totheavs startdoc procedure and before a call to the avs_enddoc procedure, you can use exactly
those calls which your filter procedure would have used, for example, avs addword or avs_addliteral.

Return Values
AVS OK or an error code.

Seealso

avs _newdoc

avs startdoc

5-77

C Programmer’s Reference

avs_errmsg

Returns a pointer to error message text associated with an error code.
C Synopsis

AVSAPI (char *)avs_errnsg(int code);
Arguments

char Error message text.

Description

The avs_errmsg procedure returns atext string associated with an error code. It is used to trand ate any non-zero
status codes returned by any of the Index procedures to a printable string (English).

Return Values
Error message text.

See also
avs ermsg copy

5-78

C Programmer’s Reference

avs_errmsg_copy

Copies the error message string to a buffer.

C Synopsis

AVSAPI (voi d) avs_errnsg_copy(int e,

Arguments

char * buf,

i nt bufsiz);

buf

Buffer for the error message text.

Description

Theavs_errmsg_copy procedure copies the error message text to a buffer.

Return Values

None.

Seealso

avs ermsg

5-79

C Programmer’s Reference

avs_getindexmode

Returns whether the current index isin build or query mode.
C Synopsis

AVSAPI (i nt) avs_geti ndexnode (
IN avs_idxHdl _t pHdl /* ptr to index handle */

);
Arguments

pHdI Pointer to theindex handle.

Description

Returns O if theindex isin query mode, or 1 if theindex isin build mode.

Return Values

Value Returned Description
0 Theindex isin query mode.
1 Theindex isin build mode.
See also

avs_compact

avs getindexversion

avs makestable

5-80

C Programmer’s Reference

avs_getindexversion

Returns the current stable version number of the index.

C Synopsis

AVSAPI (i nt) avs_getindexversion (
IN avs_idxHdl _t idx /* Index handle (from avs_open) */

);
Arguments

idx

String specifying the index handle.

Description

Returns the current stable version of the index. The index version number reflects increments resulting from the
avs makestable or avs compact procedures.

Return Values

Returns the version number of the index.

Seealso

avs compact

avs getindexmode

avs makestable

5-81

C Programmer’s Reference

avs_getindexversion_counts_v

Returns the current stable version number of the index from the given counts context.
C Synopsis

AVSAPI (i nt) avs_getindexversion_counts_v (
IN avs_countsHdl t countsHdl /* counts handle */

);
Arguments

idx String specifying the counts handle.

Description

The avs_getindexver sion_counts v procedure returns the current stable version of the index from the given
counts context. The index version number reflects increments resulting from the avs makestable or avs_compact
procedures.

Return Values
AVS OK or an error code.

See also
avs compact

avs getindexmode

avs getindexversion

avs getindexversion search v

avs makestable

5-82

C Programmer’s Reference

avs_getindexversion_search_v

Returns the current stable version number of the index from the given search context.
C Synopsis

AVSAPI (i nt) avs_geti ndexversion_search_v (
IN avs_searchHdl t searchHdl /* search result handle */
);

Arguments

idx String specifying the index handle.

Description

The avs_getindexversion_sear ch_v procedure returns the current stable version of the index from the given
search context. The index version number reflects increments resulting from the avs_makestable or avs_compact
procedures.

Return Values
AVS OK or an error code.

See also
avs compact

avs getindexmode

avs getindexversion

avs makestable

5-83

C Programmer’s Reference

avs_getsearchresults

Retrieves results of a search.

C Synopsis

AVSAPI (i nt) avs_getsearchresults (
I N avs_searchHdl _t searchHdl, /* search handle (from avs_search */
INint resultNum /* which docunment fromresults list */

);

Arguments

searchHdl The search handle (from avs_sear ch).

resultNum Specifies the document to get from the resultslist.

Description

The avs_getsear chresults procedure is used to retrieve specific search results after calling the avs_sear ch
procedure and place the results in the search handle. An ordinal value specifies which result to retrieve. This
ordinal must be a value between 0 and the number of documents returned by avs_sear ch (in the pDocsReturned
argument), minus 1. This procedure retrieves various document attributes, such as, relevancy value, document
date, document Id, and document data and makes the value of the attributes available through the search results
handle.

Return Values
AVS OK or an error code.

Seealso

avs getsearchterms

avs search getdata

avs search getdatalen

avs search getdate

avs search getdocid

avs search getrelevance

5-84

C Programmer’s Reference

avs_getsearc hterms

Retrieves one ranking term and statistics for a search.
C Synopsis

AVSAPI (i nt) avs_getsearchterns (
I N avs_searchHdl _t pSearchHdl ,/* search handle */
INint termNum/* which termfromresults list */
QUT char **term/* term (storage rel eased by avs_search_cl ose) */

QUT long *count /* # occurrences...-1 nmeans too nmany, ignored */
)
Arguments
psearchHdl The search handle (from avs_sear ch).
termNum Specifies which term to retrieve from the resultslist.
**term Receives pointer to term string.
*count Receives the number of occurrences of aterm.
Description

The avs_getsear chter ms procedureis used to retrieve aterm and term statistics for the specified search. The
term to retrieveis the O-relative result number specified in the second argument.

Return Values
AVS OK or an error code.

Seealso

avs getsearchresults

avs search getdata

avs search getdatalen

avs search getdate

avs search getdocid

avs search getrelevance

5-85

C Programmer’s Reference

avs_getsearchversion

Retrieves a version string which defines the version of the index used for this search.
C Synopsis

AVSAPI (i nt) avs_getsearchversion (
I N avs_searchHdl _t pSearchHdl, /* search handle */
QUT char * searchversion

);

Arguments

searchHdl The search handle (from avs_sear ch).

searchversion Specifies the version of the index for which you have a search result.
Description

The avs_getsear chver sion procedure retrieves a version string which defines the version of the index used for
this search. This string can be passed to the avs_search_ex or avs_search_genrank proceduresto limit results to
documents added since that version.

The version string will not be more than the maximum length defined by AVS_SEARCHVERSI ON_MAXLEN.
The default is 30 bytes long, including the terminating null byte.

Return Values
AVS OK or an error code.

Seealso

avs getsearchterms

avs search getdata

avs search getdatalen

avs search getdate

avs search getdocid

avs search getrelevance

5-86

C Programmer’s Reference

avs_lookup_valtype

Looks up a value type by name.
C Synopsis

AVSAPI (avs_val type_t) avs_l ookup_val type (
IN char * name

)
Arguments

name The pointer to the string that contains the name of the value type.

Description

Theavs_lookup_valtype procedureis used to lookup value types defined by the avs_define_valtype procedure.

It returnsa NULL or a pointer to the type.

Return Values
NULL or a pointer to the type.

Seealso

avs define valtype

avs release valtypes

avs search genrank

5-87

C Programmer’s Reference

avs_makestable

Commits any pending index updates to disk.
C Synopsis

AVSAPI (i nt) avs_makestable (
I N avs_idxHdl _t idx /* Index handle (from avs_open) */

);
Arguments

idx Theindex handle.

Description

The avs makestable procedure saves recent deletions or additions made to the index file. The documents and
words added to the index are flushed to the disk, and all documents marked for deletion by a previous call to
avs_deletedocid, are deleted. This procedure should be called before closing the index and after every 500,000 or
so words have been indexed.(This number depends on available memory - larger systems can wait longer
between makestabl e procedures.)

This procedure finishes the job of adding and deleting documents and makes the newly added documents
"searchable" while removing the documents marked for deletion by the avs_deletedocid procedure.

The application should also compact theindex after a series of updates is completed, to improve subsequent
query performance or to recover space from deleted entries. Y our application should test if compaction is needed
(avs_compactionneeded) after each avs makestable call and perform aavs_compact_minor loop if the answer
isyes. If you defer compaction too long, the makestable procedure will take longer and longer to complete.

Return Values
AVS OK or an error code.

Seealso

avs close

avs_compact
avs deletedocid

avs _newdoc

avs _open

5-88

C Programmer’s Reference

avs_newdoc

Creates a new document or replaces an existing document in the index.
C Synopsis

AVSAPI (i nt) avs_newdoc (
I N avs_idxHdl _t idx, /* Index handle (from avs_open) */
INvoid * pFilterdata, /* info identifying the docunent -passed to filter
*/
INfilter_p t pFilter, /* ptr to filter function */
IN const char *pDocl d, /* document identifier string */
INint flags, /* conditions: docid nust NOT al ready exist (1),
docid MJST already exist (2),
duplicate docid s allowed (4)*/
QUT unsigned | ong *pNumMrds /* total words in docunent */

);

Arguments
idx Theindex handle.
pFilterdata Pointer to arbitrary data need by the filter procedure, such asthefile path or the
database key. This pointer is passed to the filter procedure.
filter_p t pFilter A pointer to the filter procedure that prepares the document for indexing.
pDaocld String that names the document (limited to 120 bytes and case sensitive).
flags Setsthe conditions for creating a new document. The conditions can have the
following flags:
0 Does not matter whether the document already exists. If it does not exist,
createit. If it doesexist, replaceit.
1 The docid must not already exist.
2 The docid must already exist.
4 Duplicate document 1Ds are allowed. If a document with the same ID
already exists, another one can also be created.
pNumWords Thetotal number of words in the document
Description

The avs_newdoc procedure creates a new document in a specified index. A filter procedure (callback function)
must be defined which is responsible for adding words to the index (see Creating a Filter Procedure and
avs_addword for more information).

Thefilter callback is called with the following arguments:

IN avs_idxHdl _t idx (i ndex handl e)

IN void * pFilterdata, (info identifying the docunent)

I N unsi gned | ong startl oc, (starting location for addi ng words or
literals)

QUT unsi gned | ong *pNumMrds (the number of words added to the index)

5-89

C Programmer’s Reference

The function should return the number of words added to the index in the last argument. The filter function
should also return AVS_OK to signal success, or AVS FILTER _ERRto signa an error. A filter error will cause
avs newdoc toreturn AVS FILTER ERR.

An Alternative to the avs_newdoc Procedure

Call avs_startdoc with the same arguments as the avs_newdoc procedure with the exception of thefilter
function and its argument. Thefirst location availablein theindex for the new document is returned through the
pStartLoc argument. Use thisin thefirst call to the avs_addword procedure or similar kinds on procedures.
When you are finished adding document contents, call the avs_enddoc procedure to terminate the document.

After acal totheavs startdoc procedure and before a call to the avs_enddoc procedure, you can use exactly
those calls which your filter procedure would have used (for example, avs addword or avs_addliteral).

Use of Flags

When you use the flags to cause automatic deletion of previous docid instances, it makes the normal, periodic
document update easy. However, it does not protect against other instances of the same doc-id within the pending
document set in memory, only against those documents recorded onto disk at some previous pass. If there are any
documents with the specified docid in the pending document set (those documents added since the last call to
avs_makestable), an error (AVS _DOC_EXISTS) isreturned and no documents are del eted.

Return Values
AVS OK, AVS FILTER ERR or an error code.

Seealso

avs close
avs makestable

avs _open

5-90

C Programmer’s Reference

avs_open

Opens an index for querying or for modifying.
C Synopsis

AVSAPI (int) avs_open (

IN const avs_paraneters_t * paraneters,

IN const char * path, /* path nane to index |ocation on disk */

I N const char * node, /* node "r" for read-only, "rw' for nodify,
"ro" for cdrom*/
QUT avs_idxHdl _t * pldx /* new i ndex handl e */

);

Arguments

parameters Pointer to the avs_parameter block.

path String that isthe full or relative path of the index directory on disk.

mode String that specifies whether the index should be opened asaread only (r) or a
read write (rw) index.

pl dx The location to receive the handle of the opened index. Thishandleisused in
subsequent index functions.

Description

The avs_open procedure opens theindex pointed to by the path argument. The mode parameter can be either "r"
for read only, "rw" for read-write, and "ro" for CD-ROM. When "rw" is set, the index is opened for reading and

writing. Appropriate locks are set to interlock reads and updatesin other processes.

Note: The directory specified by path must exist. If the directory specified by path is empty, a new index will be

created.

Return Values
AVS OK or an error code.

Seealso

avs close
avs makestable

avs _newdoc

5-91

C Programmer’s Reference

avs_guerymode

Optimizes an index for optimum query performance.
C Synopsis

AVSAPI (i nt) avs_querynode (
IN avs_idxHdl _t idx /* Index handle (from avs_open) */

);
Arguments

idx Theindex handle.

Description

The avs_querymode procedure optimizes an index for response to search calls. This allows optimal responsein
guerying the index when use of the query interface is high. The new mode takes effect immediately. This stateis
not retained at the next call to avs_open unless either the avs makestable or avs_compact procedureis called.

This procedure may cause a full compaction of the index.

Return Values
AVS OK or an error code.

Seealso

avs buildmode
avs makestable

avs _newdoc

5-92

C Programmer’s Reference

avs_release valtypes

Releases all value type definitions.
C Synopsis

AVSAPI (voi d) avs_rel ease_val types(void);

Description

Theavs release valtypes procedure releases any value types that have been defined. This procedure should only
be called after your application'slast call to avs close.

Return Values
AVS OK or an error code.

Seealso

avs define valtype

avs lookup valtype

5-93

C Programmer’s Reference

avs_search

Searches for documents that match a query expression and the given search parameters.

C Synopsis

AVSAPI (i nt) avs_search (

IN avs_i dxHdl _t idx, /* Index handle (from avs_open) */
IN const char * pQuery, /* sinple query expression */
IN const char * pBool Query, /* bool ean query expression */
IN avs_options_p_t pOptions, /* query options */

QUT | ong *pDocsFound, /* no. of documents found */

QUT | ong *pDocsRet ur ned, /* no. of documents returned */
QUT | ong *pTer nCount , /* no. of terms in rank string */
QUT avs_searchHdl _t *pSear chHdl /* search handl e (used with

avs_getsearchresult) */

)

Arguments

idx Theindex handle.

pQuery Pointer to asimple (or ranking) query expression. May be NULL.
pBoolQuery Pointer to a boolean query expression.May be NULL.

pOptions The query options.

pDocsFound Pointer to the number of documents found.

pDocsReturned Pointer to the number of documents returned. This isthe same as the pDocsFound
argument unless an argument of the avs_default_options structure limits the number of
documents returned, or if ranking terms are present.

pTermCount The pointer to the number of termsin the ranking string.
pSearchHdl The search handle to use with avs_getsear chresults.
Description

The avs_search performs a search for documentsin an index. A ssimple query expression can contain words,
phrases, the asterisk (*) wildcard character, and the + and - operators, which require or prohibit the presence of a
word in the search results. A Boolean search expression uses the logic operators AND, OR, NOT, NEAR, or
WITHIN.

This procedure searches the index and reports the following results:
the number of documents found
the number of documents actually returned for inspection (subject to the supplied limit)
ahandlefor the returned documents

It is possible to use thisinterface to perform consistently with either the AltaVista smple sear ch or the AltaVista
advanced sear ch function (as seen at http://altavista.digital.com). Y ou can also effectively combine both
approachesin one call.

5-94

C Programmer’s Reference

To Perform a Smple Search

Use the pQuery argument to point to the ssmple query string. Do not use the pBoolean argument. Set
AVS OPT_FLAGS RANK_TO BOOL flagto 1.

To Perform an Advanced Search

Use the pQuery argument to point to ranking terms. Use the pBoolean argument to point to the advanced query
string. Set AVS_OPT_FLAGS RANK_TO_BOOL flag to 0.

The Combined Approach -- Simple Query with Boolean Qualifiers

Use the pQuery argument to point to the simple query string and use the pBoolean argument to point to the
advanced query string. Set AVS OPT_FLAGS RANK_TO_BOOL flag to 1. In this case, the behavior isthat of
the simple query, filtered by the boolean expression, that is, the results are the inter section of what would be
produced by the ssimple query and the boolean query separately.

For more information, see Searching the Index. In all cases, the results are ranked according to the relative
weighted occurrence of the (non-negative) termsin the simple query (or ranking) string. If there are no such
terms, the result is unranked.

Additional Query Option
The avs_sear ch procedure has an option which lets you control ranking weight of search terms:

AVS OPT_FLAGS NO_POS BOOST - If you st thisflag to 1, the extra weight that a search term occurring
early on in the document receivesis suppressed. Normally, if a search term occursin thefirst eight words of a
document (for example, thetitle), it receives extraweight in the ranking process. If the search term occursin the
first 32 words of a document, it also receives extra weight but not as much asif it occurred in the first 8.

Return Values
AVS OK or an error code.

Seealso

avs default options

avs getsearchresults

avs getsearchterms

avs search ex

5-95

C Programmer’s Reference

avs_search_close

Closes a search request.
C Synopsis

AVSAPI (i nt) avs_search_cl ose (
IN avs_searchHdl t SearchHdl /* the search handle */

);
Arguments

searchHdl The search handle.

Description

The avs_search_close procedure closes a search. This must be called when all callsto avs_getsearchresultsare
completed, to release the resources allocated for a search.

Return Values
AVS OK or an error code.

Seealso

avs makestable
avs _newdoc

avs _open

5-96

C Programmer’s Reference

avs_search_ex

Searches for documents that match a query expression and the given search parameters with the searchsince
option.

C Synopsis
AVSAPI (int) avs_search_ex (
IN avs_i dxHdl _t idx, /* Index handle */

IN const char * pQuery, /* sinple query expression */
IN const char * pBool Query, /* bool ean query expression */
IN const avs_options_p_t pOptions, /* options */
I N const char * searchsince, /* NULL, or version string */
QUT | ong *pDocsFound, /* no. of docunents found */
QUT | ong *pDocsRet ur ned, /* no. of docunents returned */
QUT | ong *pTer nCount , /* no. of terns used in ranking */

QUT avs_searchHdl _t *pSearchHdl /* search handle (used with
avs_getsearchresult)*/);

Arguments

idx Theindex handle.

pBoolQuery Pointer to a boolean query expression.

pOptions The query options.

searchsince Version string or NULL.

pDocsFound Pointer to the number of documents found.

pDocsReturned Pointer to the number of documents returned. Thisis the same as the pDocsFound
argument unless an argument of the avs_default_options structure limits the number of
documents returned.

pTermCount Pointer to the number of terms used in ranking.

pSearchHdl The search handle to use with avs_getsear chresults.

Description

Theavs_search_ex lets you specify a searchsince argument that returns results from documents that have been
added since the last search.

For more information, see Searching the Index.

Return Values
AVS OK or an error code.

Seealso

avs default options

avs getsearchresults

avs getsearchterms

avs search

5-97

C Programmer’s Reference

avs_search_genrank

Searches for documents that match a query expression and ranks the results according to the ranking expression.

C Synopsis
AVSAPI (int) avs_search_genrank (
IN avs_idxHdl t idx, /* Index handle */
I N const char * pBool Query, /* bool ean query expression */
I N const char * pRankTer ns, /* generic ranking expression */
I N avs_ranksetup_t * pRankSetup, /* NULL, or special ranking setup */
I N const avs_options_p_t pOptions, /* options */
I N const char * searchsince, /* NULL, or version string */
QUT | ong *pDocsFound, /* no. of documents found */
QUT | ong *pDocsRet ur ned, /* no. of documents returned */

QUT avs_searchHdl _t *pSearchHdl /* search handle (used with
avs_getsearchresult) */

)
Arguments
idx Theindex handle.
pBoolQuery The Boolean query expression.
pRankTerms The generic ranking expression.
pRankSetup NULL or the special ranking expression.
pOptions The options specified in the avs_parameter structure.
searchsince NULL or version string.
pDocsFound Pointer to the number of documents found.
pDocsReturned Pointer to the number of documents returned.
avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more
information.
Description

Theavs_search_genrank procedure retrieves information about a search result and storesit in a buffer. To
perform the Boolean query, use the [X-Y] form for the search terms. If you supply aranking term that does not
exist in theindex, or supply no ranking term, no results are returned. This behavior is different from that of
avs_search in that the ranking term, if it is supplied, may or may not exist in the index.

The ranking expression can consist of an application-defined ranking term, or one of the pre-defined ranking
terms.

The pre-defined ranking terms are:
#date -- ranks documents according to date
#time -- ranks documents according to date and time
If theterm is preceded by aminussign (-), therank order isreversed. For example,

#date produces most-recent dates first
5-98

C Programmer’s Reference

-#date produces oldest dates first
Granularity of ranking
When ranking documents by #date, the granularity isa day on al platforms.
When ranking documents by #time, the granularity is a minute on Windows NT, Solaris, Linux (Intel).

When ranking documents by #time, the granularity is a second on Compag Tru64 UNIX (DIGITAL
UNIX).

The application-defined ranking term must be added to the index with avs_setrankval. You can also reverse the
sort order of search results by preceding this ranking term with a minus sign. The pRankSetup argument should
always be NULL.

If you have multiple-valued rank values, the only valid use for the multiple-valued rank valuesisfor filtering.

Return Values

Number of documents found, the number of documents returned.

Seealso

avs search getdata

avs search getdatalen

avs search getdate

avs search getdocid

avs search getdocid copy

avs search getrelevance

5-99

C Programmer’s Reference

avs_search_getdata

Returns the data associ ated with a search result.
C Synopsis

AVSAPI (void *) avs_search_getdata (
IN avs_searchHdl t searchHdl /* search result handle */

)

Arguments

avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more
information.

Description

The avs_search_getdata procedure retrieves information about a search result. Often the document data consists
of thetitle or thefirst several lines of the document. It must be preceded by a call to avs_getsear chresultsand a
call toavs _search_getdatalen to determine the size of the buffer to allocate for the document data.

If your index has documents that have multiple dates associated with it, and the dates have been added by a
combination of avs_setdocdate, avs setdocdatetime, and avs_adddate, search and ranking behavior is described
below: Search by date: Any date associated with a document that falls within the range specified in a search will
result in that document being returned.

Rank by date: Ranking documents by date will only reflect the date added by avs _setdocdate or
avs setdocdatetime.

Return Values

A pointer to the document data.

Seealso

avs search getdatalen

avs search getdate

avs search getdocid

avs search getrelevance

5-100

C Programmer’s Reference

avs_search_getdata copy

Returns the data associated with a search result and storesit in a buffer.

C Synopsis
AVSAPI (voi d) avs_search_get data_copy (
IN avs_searchHdl t searchHdl, /* search result handle */

IN void * dat abuf,
IN int buflen

)

Arguments

avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more
information.

databuf The buffer which contains requested of the search result.

buflen The buffer length of databuf.

Description

Theavs search_getdata _copy procedure retrieves at most buflen bytes of information about a search result and
storesit in databuf. Applications like Java or VisualBasic can retrieve the information in a usable format. Often
the document data consists of thetitle or the first several lines of the document. It must be preceded by a call to
avs_getsear chresults.

Return Values

None.

Seealso

avs search getdata

avs search getdatalen

avs search getdate

avs search getdocid

avs search getdocid copy

avs search getrelevance

5-101

C Programmer’s Reference

avs_search_getdatalen

Returns the length of the data associated with a search result.

C Synopsis

AVSAPI (i nt) avs_search_getdatal en (
IN avs_searchHdl t searchHdl /* search result handle */

)

Arguments

avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more
information.

Description

The avs_search_getdatalen procedure retrieves the length of the document data associated with a search result.
Often the data consists of thetitle or the first several lines of the document.

Return Values
The length in bytes of the document data.

Seealso

avs search getdata

avs search getdate

avs search getdocid

avs search getrelevance

avs setdocdate

5-102

C Programmer’s Reference

avs_search_getdate

Returns the date associated with a search result.

C Synopsis
AVSAPI (voi d) avs_search_getdate (
IN avs_searchHdl t searchHdl, /* search result handle */
QUT int *dateY, /* Year 0100 <> 2148*/
QUT int *dateM /[* Month (1-12) */
QUT int *dateD /* Day (1-31) */
);
Arguments
avs_searchHdl_t searchHdl The handle of the search result about which you are requesting more
information.
dateY The year greater than 01/01/0100 but less than 12/31/2148 inclusive.
dateM The month of the year (1-12).
dateD The day of the month (1-31).
Description

The avs_search_getdate procedure retrieves the date the document was indexed as set by avs setdocdate. The

avs_search_getdate procedure must be preceded by a call to avs_getsear chresults.

Return Values
The date of the document. (See avs_setdocdate for date format.)

Seealso

avs search getdata

avs search getdatalen

avs search getdocid

avs search getrelevance

avs setdocdate

5-103

C Programmer’s Reference

avs_search_getdocid

Returns the unique identifier associated with a search result.

C Synopsis

AVSAPI (unsi gned char *) avs_search_getdocid (
IN avs_searchHdl t searchHdl /* search result handle */

)

Arguments

avs_searchHdl_t searchHdl The handle of the search result for which you are requesting the
document ID.

Description

Theavs_search_getdocid procedure retrieves theidentifier of the search result document.

Return Values

A pointer to the document identifier string. Valid until the next call to avs_getsear chresult or avs search_close.

Seealso

avs search getdata

avs search getdatalen

avs search getdate

avs search getrelevance

5-104

C Programmer’s Reference

avs_search_getdocid_copy

Returns the unique document identifier associated with a search result to the caller's buffer.

C Synopsis
AVSAPI (voi d) avs_search_get doci d_copy (
IN avs_searchHdl t searchHdl, /* search result handle */
I N unsi gned char * dat abuf, /* caller's buffer */
INint buflen /* length of caller's buffer */
);
Arguments
avs searchHdl_t searchHdl | The handle of the search result for which you are requesting the document
identifier.
databuf The buffer which contains the value of search result handle.
buflen The buffer length of databuf.

Description

Theavs search_getdocid_copy procedure stores the document identifier of the search result in a buffer. Because
applications like Java and Visual Basic cannot use the format (char *) of thereturn in the avs_search_getdocid
procedure, avs search_getdocid_copy stores the document identifier of the search result in a buffer to be called
by these types of applications.

Return Values

None

Seealso

avs search getdata

avs search getdatalen

avs search getdate

avs search getdocid

avs search getdocidlen

avs search getrelevance

5-105

C Programmer’s Reference

avs_search_getdocidlen

Returns the length of the document identifier associated with a search result.
C Synopsis

AVSAPI (i nt) avs_search_getdocidlen (
IN avs_searchHdl t searchHdl /* search result handle */

)

Arguments

avs_searchHdl_t searchHdl The handle of the search result for which you are regquesting the length of
the document identifier.

Description

The avs_search_getdocidlen procedure retrieves the length of the document identifier for the search result.

Return Values

The length of the document identifier string.

Seealso

avs search getdata

avs search getdatalen

avs search getdate

avs search getdocid

avs search getrelevance

5-106

C Programmer’s Reference

avs_search_getrelevance

Returns the relevance val ue associated with a search result.
C Synopsis

AVSAPI (fl oat) avs_search_getrel evance (
IN avs_searchHdl t searchHdl /* search result handle */
);

Arguments

avs_searchHdl_t searchHdl The handle of the search result for which you are requesting the relevance
value.

Description

The avs_sear ch_getrelevance procedure retrieves the rel evance val ue associated with a search result. The closer
thevalueisto 1, the more useful and relevant the search result islikely to be.

A search result can also have ardevancy ranking of zero (0). In this case, all results have the same weight or are
equally relevant. A relevancy ranking of zero can happen in the case where the search did not have aranking
string.

For more details, see Understanding Relevance Ranking.

Return Values
The relevance value, expressed as a floating value (float).

Seealso

avs search getdata

avs search getdatalen

avs search getdate

avs search getdocid

5-107

C Programmer’s Reference

avs_setdocdata

Sets the document data for a document being added with the avs newdoc procedure. A filter makes this call.
C Synopsis

AVSAPI (i nt) avs_setdocdata (

IN avs_idxHdl _t idx, /* Index handle (from avs_open) */
I N const void *pDocdata,/* ptr to docunent data */
INint len/* length of doc data (bytes) */

);

Arguments

idx Index handle.

pDaocdata Pointer to the document data.

len Length of document data in bytes.

Description

The avs_setdocdata procedure sets the document's data (for example, the title of the document or other
descriptive information). The data can be arbitrary byte-oriented data. A filter callsthis procedure after analyzing
the document's content. The data is available after a successful search.

Return Values
AVS OK or an error code.

See also
avs addfield

avs addword

avs setdocdate

5-108

C Programmer’s Reference

avs_setdocdate

The avs_setdocdate procedure sets the date on a document being added with the avs newdoc procedure. A filter
makes this call.

C Synopsis

AVSAPI (i nt) avs_setdocdate (
IN avs_idxHdl _t idx, /* Index handle (from avs_open) */
INint dateY,/* Year 0100 <>2148 */

INint dateM /* Month (1-12) */
INint dateD /* Day (1-31) */
)
Arguments
idx Theindex handle.
dateY The year greater than 01/01/0100 but less than 12/31/2148 inclusive.
dateM The month of the year from 1 to 12.
dateD The day of the month from 1 to 31.
Description

The avs_setdocdate procedure sets the date of the document. A filter calls this procedure.

The dateisreturned in the search results and can beretrieved by calling avs_sear ch_getdate() on the search
results handle. Dates are indexed and can be used to limit searches by adding a date range as an additional term in
the boolean query string argument passed to avs_sear ch.

The date and time (see avs_setdocdatetime)can a so be used to order search results. For further information see
avs search genrank.

Return Values
AVS OK or an error code.

See also
avs addfield

avs addword

avs setdocdata

5-109

C Programmer’s Reference

avs_setdocdatetime

Sets the date and time on a document being added with the avs _newdoc procedure. A filter makesthis call.

C Synopsis

AVSAPI (i nt) avs_setdocdatetinme (
avs_idxHdl t idx, /* Index handle */

I'N

z22Z2z2z2Z22

)

nt
nt
nt
nt
nt
nt

dateY,/* Year (>0100) */
dateM/* Month (1-12) */
dateD,/* Day (1-31) */
timeH /* Hour (0-23) */
timeM/* Mnute (0-59) */
timeS/* Second (0-59) */

Arguments

idx

Theindex handle.

dateY

The year greater than 01/01/0100 but less than 12/31/2148 inclusive.

dateM

The month of the year from 1 to 12.

dateD

The day of the month from 1 to 31.

timeH

The hour from 0 to 23.

timeM

The minute from O to 59.

timeS

The seconds from O to 59.

Description

The avs_setdocdatetime procedure sets the date and time of the document. A filter calls this procedure.

The dateisreturned in the search results and can beretrieved by calling avs_sear ch_getdate() on the search

results handle.

Dates are indexed and can be used to limit searches by adding a date range as an additional term in the boolean

query string argument passed to avs_sear ch.

Return Values
AVS OK or an error code.

Seealso

5-110

avs addword
avs setdocdata

avs setdocdate

C Programmer’s Reference

avs_setparseflags

Setsavs addwor d parsing options.
C Synopsis

AVSAPI (voi d) avs_set parseflags (
I N avs_idxHdl _t idx, /* Index handle (from avs_open) */
INint parseflags

);
Arguments

idx Theindex handle.

Description

The avs_setpar seflags procedure sets the parsing options for the avs_addword procedure. Currently, either zero
(0) or AVS PARSE_SGML isthe only valid value for this procedure. AVS_PARSE_SGML allows the indexer
to recognize SGML encoded entities as characters and add words containing those characters to the index. For
example, é isthe SGML encoding e with the acute accent.

Return Values
AVS OK or an error code.

See also
avs addword

5-111

C Programmer’s Reference

avs_setrankval

Adds a numeric value to a document index that can be used for ranking instead of document date or time.
C Synopsis

AVSAPI (i nt) avs_setrankval (

IN avs_idxHdl _t idx, /* Index handle (from avs_open) */
IN const avs_valtype t valtype, /* type to use */

I N unsi gned | ong val ue/* val ue */

)
Arguments

idx Theindex handle.

valtype Thevaluetype.

value The value.

Description

Theavs_setrankval procedure adds a numeric value to a document index that can be used for ranking. A given
value type defined with avs_define_valtype should be used at most oncein a document. Multiple values per
document can be set if the value type is defined with avs_define_valtype multiple.

Return Values
AVS OK or an error code.

Seealso
avs addvalue

avs define valtype

avs define valtype multiple

avs search genrank

5-112

C Programmer’s Reference

avs_startdoc

Prepares to create a new document in the index.
C Synopsis

AVSAPI (i nt) avs_startdoc (

IN avs_idxHdl t idx, /* Index handle */

I N const char *pDocld, /* docunent identifier string */

INint flags, /* conditions: docid nust NOT al ready exist (1),
docid MJST already exist (2),
duplicate docid s allowed (4)*/

QUT unsigned long *pStartLoc /* first available location in new doc */

);

Arguments

idx Theindex handle.

pDaocld String that identifies the document (limited to 120 bytes and case sensitive).

flags Sets the conditions for creating a new document. The conditions can have the following flags:
0 Does not matter whether the document already exists. If it does not exist,
createit. If it doesexigt, replaceit.
1 New document. The docid must not already exist.
2 Replace an existing document.
4 Duplicate document 1Ds are allowed. If a document with the same ID
already exists, another one can also be created.

pStartLoc Returns the first location available in the index for the new document.

Description

Theavs_startdoc procedure creates a new document in theindex in alinear fashion useful to applications like
Java and Visual Basic. This procedure must be paired with a call to avs_enddoc to bracket the beginning and end
of the document to be added to the index.

The same argumentsin avs_newdoc , with the exception of thefilter function and its argument, arealso used in
this procedure.

Thefirst location available in the index for the document is returned though the pStartLoc argument. Usethisin
thefirst call to theavs addword procedure or similar kinds of procedures. When you are finished adding
document contents, call the avs_enddoc procedure to terminate the document.

After acal totheavs_startdoc procedure and before a call to the avs_enddoc procedure, you can use only those
calls which would be allowed in avs_newdoc filter operations (for example, avs_addword or avs_addliteral).

If the flags are set to replace an existing document, and if there are any documents with the specified docid in the
pending document set (those documents added since thelast call to avs makestable), an error
(AVS_DOC_EXISTS) isreturned and no documents are added or del eted.

Return Values

AVS OK or an error code.
5-113

C Programmer’s Reference

Seealso

avs enddoc

avs _newdoc

5-114

C Programmer’s Reference

avs_timer

Sets a timeout value for query processing.
C Synopsis

AVSAPI (voi d) avs_tiner (
I N const unsigned | ong current

);
Arguments

const The value of the timeout range.

Description

Theavs_timer procedureisused by an application's timer thread to pass a current timer value from the
application into AltaVista Search. In thisway, search operations can be limited in processing duration. If the
application does not have atimer thread, no search timeoutswill occur.

In avs_options.timeout, you can set the number of timer units allowed per query. At the start of each search,
AltaVista Search sets atimer limit equal to the current timer value plus the value of avs_options.timeout. It
periodically checks the current timer value against the timer limit. When the current timer value is greater than
the limit, the search process stops and returns the partial results accumulated so far.

Return Values
AVS OK or an error code.

Seealso

avs enddoc

avs _newdoc

5-115

C Programmer’s Reference

avs_version

Returns a pointer to library version strings.
C Synopsis

AVSAPI (const char**) avs_version (void);

Description

The avs_version procedure returns the pointer to the library version strings. The version strings can be a search
version or an index version. The strings contain such information as:

The avs_implementation version

Theinterface version

Whether the application is single or multi-threaded
The build number

Thelicense thread

These strings are useful in problem reporting and in keeping track of the current search context.

Return Values
AVS OK or an error code.

Seealso

avs enddoc

avs _newdoc

5-116

C Programmer’s Reference

avsi_setdocdata

Sets the document data for an AltaVista Intranet index.
C Synopsis

AVSAPI (i nt)avsi _setdocdata (
I N avs_i dxHdl _t pldx, /* Index handle (from avs_open) */
I N avsi _docdata_t *pDocdata /* Docunent data */

Arguments

pl dx Theindex handle from avs_open.

pDaocdata The document data.

Description

The avs_setdocdata procedure sets the document data for an AltaVista Intranet index. Usethe avsi_docdata
structure to set the following:

URL

Document title
Document abstract
Language

Character set encoding

Return Values
AVS OK or an error code.

Seealso

avs_docdata structure avsi_getdocdata

5-117

C Programmer’s Reference

avsi_getdocdata

Retrieves the document data from an AltaVista Intranet index.
C Synopsis

AVSAPI (i nt)avsi _getdocdata (
IN avs _searchHdl t searchHdl, /* search result handle */
QUT avsi _docdata_t *pDocdat a /* Docunent data */

);

Arguments

searchHdl The search handle result.

pDaocdata The document data.

Description

The avs_getdocdata procedure retrieves the document data from an AltaVista Intranet index.

Return Values
AVS OK or an error code.

Seealso
avs setdocdata

avs_docdata structure

avs _url2docid

5-118

C Programmer’s Reference

avsi_url2docid

Creates a suitable document ID from a URL.

C Synopsis
AVSAPI (voi d) avsi _url 2docid (
IN char *pURL, /* URL string */
QUT char *pDocid [* ptr to buffer to contain doc ID */
Arguments
pURL The URL string.
pDocid The pointer to buffer to contain doc ID.
Description

Theavs_url2docid procedure creates a suitable document 1D from a URL. ThisID isused to add or delete a
document to or from the AltaVista Intranet index.

Return Values
AVS OK or an error code.

Seealso

avs_getdocdata
avs setdocdata

avs _url2docid

5-119

C Programmer’s Reference

avsi_convert_to UTF8

Converts a string of characters from the specified encoding character set to UTF-8.
C Synopsis

AVSAPI (int) avsi_convert_to_ UTF8 (

I char *p_buf, /* the string to convert */

I i nt sizebuf, /* length of string to convert */
char *p_utf8buf, /* buffer to contain UTF8 string */
int size utf8buf, /* max size of UTF8 buffer */
char * charset /* character set, e.g. EUCKR NAME */

NOTE: use EUC-CN for 'Sinplified Chinese', not GB */

gZZ

*Z2 2

|
|
/
)

Arguments

p_buf The string to convert.

sizebuf Thelength of the string to convert.

p_utf8buf The buffer to contain UTF8 string.

size utf8buf The maximum size of the UTFS8 buffer.

charset The character set, for example, EUCKR_NAME. Seeavsi _conpat . h.

Description

Theavs_convert_to UTF8 procedure converts a string of characters from the specified encoding character set
to UTF8. It returnsthe length of the UTF8 string or a negative number if the conversion failed. If you are
indexing non-ASCII text, use this function to convert the native charactersto UTF8. Also, be sureto set the
AVS_CHARSET_UTF8 option when you open theindex. Note: use avsi_convert_cjkquery to convert query
strings for searching.

Return Values
The length of the UTF8 string or a negative number

Seealso

avs_convert from utf8

avs_getdocdata
avs setdocdata

avs _url2docid

5-120

C Programmer’s Reference

avsi_convert_from_UTF8
Converts a string of UTF8 characters to the specified encoding character set.

AVSAPI (int) avsi_convert_from UTF8 (

I'N char *p_utf8buf, /* the UTF8 string to convert */

I'N int size_utf8buf, /* length of UTF8 string to convert */

QUT char *p_buf, /* buffer to contain converted string */

I N i nt sizebuf, /* max size of of buffer */

IN char * charset /* character set, e.g. EUCKR _NAME (see bel ow) */
/*

NOTE: use EUC-CN for 'Sinplified Chinese', not GB */
)

Arguments

p_utf8buf The UTF8 string to convert.

size utf8buf Thelength of UTF8 string to convert.

p_buf The buffer to contain converted string.

sizebuf The maximum size of the buffer.

charset The character set, for example, EUCKR_NAME. Seeavsi _conpat . h.
Description

Theavs_convert_from_UTF8 procedure converts a string of UTF8 characters to the specified encoding
character st. It returns the length of the converted string or a negative number if the conversion failed.

Return Values

The length of the converted string or a negative number if the conversion failed

Seealso

avs_convert to utf8

avs_getdocdata
avs setdocdata

avs _url2docid

5-121

C Programmer’s Reference

avsi_convert_cjkquery

Convertsa user query in one of the CIK character setsto a query in UTF8 format with space characters between
CX characters.

C Synopsis
AVSAPI (int) avsi _convert_cjkquery(
IN char *p_buf, /* the string to convert */
IN int |en, /* length of string to convert */
QUT char *p_buf _utf8, /* buffer to contain UTF8 string */
IN int maxsize utf8, /* size of UTF8 buffer */

/* NOTE: should be at least twice the size of the query buffer */
IN char * p_charset /* character set e.g. EUCKR NAME (see bel ow) */
/* NOTE: use EUC-CN for 'Sinplified Chinese', not GB */

)

Arguments

p_buf The string to convert.

len Thelength of the string to convert.

p_buf utf8 The buffer to contain the UTF8 string.
maxsize_utf8 The maximum size of UTF8 buffer.

p_charset The character set, for example, EUCKR_NAME.
Description

Theavs_convert_cjkquery procedure converts a user query in one of the CIK character setsto aquery in UTF8
format with space characters between CIK characters. It returns the length of the UTF8 string or a negative
number if the conversion failed.

Note: this function assumes that the query string is null terminated.

5-122

C Programmer’s Reference

The user query string is converted as shown in the following examples. The double |ower-case | etters represent
double-byte Asian characters; upper-case |etter represent regular ASCII.

i nput :

out put :

i nput :

out put :

i nput :

out put :

i nput :

out put :

Return Values

ALTAVI STA -aabb " SEARCH ENG NE"
ALTAVI STA -"aa bb" "SEARCH ENG NE"

+Dl G TAL aabb97cc +dd "aabb M CRO'
+DI A TAL "aa bb" 97 "cc" +"dd" " aa bb M CRO'

title: HELLCaabbCHI NA +"aabb M CRC'
title:HELLO "aa bb" CHI NA +' aa bb M CRO

title:"HELLCaabbCHI NA"
title:"HELLO aa bb CHI NA'

The length of the UTF8 string or a negative number if the conversion failed.

Seealso

avs_convert to utf8

avs_getdocdata
avs setdocdata

avs _url2docid

5-123

C Programmer’s Reference

Data Structures

5-124

The data structures and filter procedure are defined in the avs.h file:

avs_options

This structure is used to specify search optionsin the avs_sear ch procedure. Call
avs_default_optionsto initialize to default values. This structure contains the timeout
parameter that controls the number of seconds to allow for each query.

struct avs_options {

long limit; /* maximum number of documents returned
(default=32000) */

int timeout;/* if nonzero, number of seconds to allow per query
*/

int flags;/* additional query option flags */

};

typedef struct avs_options avs_options_t, *avs_options_p_t;
The following flags are additional query option flags set in the avs_options structure:

AVS OPT_FLAGS RANK_TO BOOL - if et to 1, the behavior isthat of the simple
query, filtered by the boolean expression, that is, the results are the of what would be
produced by the ssimple query and the boolean query separately.

AVS OPT_FLAGS NO_POS BOOST - if st to 1, eliminate the higher weighting of
words occurring at the beginning of a document.

AVS OPT_FLAGS NO _LOGGING -if st to 1, no logging occurs during the
guerying operations.

AVS OPT_FLAGS RANK _LATEST —if set to 1, the most recent documents added
to theindex are ranked higher. If thisflag is off, documents added later will be ranked
lower.

avs_parameters

Theavs_parameter s structureis used to affect all index operations. The parameters should
maintain a constant value for the life of the application and if you change any, you should
rebuild your index for consistency. The following operations can be managed by this structure:

Theinterface version
The license management
The search operations

The structure of the index

C Programmer’s Reference

struct avs_parameters {
char * _interface_version; /* checked by library */

char * license; /* set to OEM license string */

int ignored_thresh; /* %(*100) for ranking ignore */

int chars_before_wildcard; /* min chars before wildcard */

int unlimited_wild_words; /* set to 1 to avoid 50 limit */

int indexformat; /* set to -1 for default, 0 for current */
long cache_threshold; /* max size file to cache (O=default)
*/

int options; /* optional indexing features */

int charset; /* character set in use */

int ntiers, nbuckets; /* max values (0 => use default) */
};

These parameters affect all operations and are intended to have a constant value for the life of
the application:

_interface version;
license;
The next few parameters affect search operations but not the index structure itself:
ignored_thresh
chars before wildcard
unlimited wild_words
indexformat
cache_threshold

The following parameters affect the index structure, and can vary across indexes. However,
they should be consistent over time for any given index or the results are undefined.

options
charset

ntiers, nbuckets

Default Values

The avs.hfile sets the following parameters with these default values:

typedef struct avs_parameters avs_parameters_t;
#define AVS_PARAMETERS_INIT { \
_AVS_INTERFACE_VERSION, \

NULL, \

1000, \

3, \

0, \

-1, \

500000L, \

7, \

AVS_CHARSET_LATIN1, \

0,0}

5-125

C Programmer’s Reference

Theinterfaceversionissetto AVS INTERFACE_VERSION.
Thelicense string is set to NULL.

Theignorethreshold is set to 1000 (ranking ignore).

The minimum characters before awildcard character is et to 3.

The unlimited number of characters after awildcard is set to 0. Set thevalueto 1 if
you want more than 50 characters after awildcard.

Theindex format is set to the defaullt.
The cache threshold is set to 500,000 bytes for the maximum sizefile.

The options are set to 7 to enable the AVS_OPTION_SEARCHSINCE,
AVS OPTION_RANKBYDATE, AVS OPTION_SEARCHBYDATE features.

The character set isset to Latinl.

The maximum values for tiers and bucketsis set to 0.

Index Management
You can disable the following features and thereby reduce index overhead somewhat:

AVS_OPTION_SEARCHSINCE
AVS _OPTION_RANKBYDATE
AVS _OPTION_SEARCHBYDATE

Each option isrepresented by a bit position in theopt i ons eement of the avs_parameters
structure.

Index for AVSI Compatibility

Toinitialize the index for compatibility with an AltaVista Search Intranet V2.3 index use
AVS PARAMETERS AVSI_COMPATIBILITY:

#define AVS_PARAMETERS_AVSI_COMPATIBILITY { \
_AVS_INTERFACE_VERSION, \

NULL, \

1000, \

3, \

0, \

1, \

500000L, \

Oxf, \
AVS_CHARSET_LATIN1, \
0,0}

The only difference between AVS PARAMETERS AVSI_COMPATIBILITY and
AVS PARAMETERS INIT isin the setting of the
AVS OPTIONS AVSI_COMPATIBILITY bit in the options € ement.

5-126

C Programmer’s Reference

Converter Structures and Parameters

AltaVista Search Developer's Kit document converter APl converts various document types to
text or HTML. It contains technology from Inso Corporation, Adobe Systems Incorporated and
Compag Computer Corporation. The Inso filters actually evaluate what type of fileit is by
opening the file and analyzing the contents (rather than by just looking at the file type). The
exceptions are PDF and PostScript files. PDF files are handed off to the Adobe PDF filter and
PostScript files are handed off to the Compaq PostScript filter. Use the following structure with
theavs_convert_init procedure to set the various converter parameters:

struct avs_convert_params {
char *cvtpath; /* Converter pathname ("dictionary” file
must be here) */

}:

typedef struct avs_convert_params avs_convert_params_t;

Character Sets You Can Index
The AltaVista Search Devel oper's Kit supports the character setsat its API:

ISOLATIN 1
UTF8
ASCII 8 hit

A given index must use only one of these character sets. The character set is specified in the
charset element of the avs parameter s structure.

AVSI Compatibility Structures

You can now write or read data to or from an index created by the AltaVista Search Intranet
(AVSI) product. The data written into an AVSI index by a Devel oper's Kit application can be
used in query oper ations performed by users of the AV Sl product using the AVSI mhttpd
query server. Likewise, data written into an AV Sl index by the AVSI indexer can beread by
the Developer's Kit applications and used in query operations performed by these applications.

Y ou may share an index between an SDK application and AltaVista Search Intranet V2.3 for
searching, only. When writing into an AV Sl index by a Developer's Kit application, the AVSI
product must not be running.

The C APl versions of the AV Sl compatibility components are called avsi26_mt.dll and
libavs26_r.afor NT and Unix, respectively. Please see the include file avsi_compat.h (source
directory) and the sample code in avsi_sample.c (source/avsi_sample directory) for information
on how to usethe C API.

Use the following structure in conjunction with avsi_setdocdata and avsi_getdocdata
procedures to read and write information about the document.

5-127

C Programmer’s Reference

struct avsi_docdata {
unsigned long szDoc; /* size of document, in bytes */

char URL[AVS_MAX_URL_SIZE+1]; /* document®s URL */
char Title[AVS_MAX_TITLE_SIZE+1]; /* document®s title */
char Abstract[AVS_MAX_ABSTRACT_SIZE+1]; /* document®s abstract
*/
char Language[3]; /* doc"s language code (e.g. "en™).
char Charset[15]; /* doc"s character set./
}:

typedef struct avsi_docdata avsi_docdata_t;
The maximum values for URL, title, and abstract sizes are as values:

AVS MAX URL_SIZE - The maximum size of a URL is 1000 characters.

AVS MAX _ABSTRACT_SIZE - The maximum size of the document abstract is 155
characters.

AVS MAX TITLE SIZE - The maximum size of the document title is 80 characters.

The other options you can set with the Search product's document data is the document's
language code and the document's character set.

The following table lists the SO 639 2-character languages codes to use with avsi_docdata
structure. All documents should have a language definition. Use of the unknown language type
may result in incorrect trandation of the document data. For more information see the

avsi _conpat . h file

Code |Language |Code |Language Code Language
da Danish de German en English

ar Arabic bg Bulgarian el Greek

cs Czech es Spanish et Estonian

fi Finnish fr French hu Hungarian
is Icelandic it [talian ja Japanese
ko Korean It Lithuanian Iv Latvian

nl Dutch no Norwegian pt Portuguese
ro Romanian ru Russian d Slovenian
& Swedish |th gﬂlgt‘?‘/’“y tr Turkish

zh Chinese pl Polish ne Niger

5-128

C Programmer’s Reference

The character set encodings are contained in the following table to use in the avsi_docdata
structure. All documents should have a defined character set. use of the unknown character set
may result in incorrect trandation (no trandation) of the document data.

Character Set Character Set Character Set
is088591 | Western (1S0-8859-1) |is088592 gggg_‘;') European (ISO- ;< s8593 | (150-8859-3)
088594 | (1S0-8859-4) is088595 | Cyrillic (1S0-8859-5) |is088596 grab' ¢ (1S0-8859-
is088597 | Greek (1SO-8859-7) is088598 |Hebrew (1SO-8859-8) is088599 | Turkish

Latin 6 -
is0885910 | Lappish/Eskimo/Nordic | koi8r Cyrillic (KOI8-R) ascii ASCII

languages
jis Japanese gis Japanese (Shift-JS) euc Japanese

o . : Traditional Chinese Traditional
gb Simplified Chinese big5 (Big5) euctw Chinese
euccn Chinese (GB) eucjp Japanese (EUC) euckr Korean (KSC)
. Mixed Chinese and Central European

utf8 Unicode hz ASCI| characters cP1250 | Windows-1250)

Cyrillic (Windows- Western (Windows- Greek (Windows-
cpl251 1251) cpl252 1252) cp1253 1253)
cp1254 | Arabic (Windows1254) |cp1255 T;gg)e"" (Windows- cp1256 |Arabic
cp1257 |Baltic (Windows1257) |cp1258 Yz'gsgam% (Windows- 11i60515 | Japanese

At thistime 15088599, 150885910, J'S, EUC, GB, EUCTW, UTF8, HZ, CP1256, JIS0212. are

not supported in the AVSI product.

Filter Procedure

The avs_newdoc filter procedure must match the following filter prototype:

typedef int (*filter_p_t)

IN avs_idxHdl_t,
IN void *,
IN unsigned long,

OUT unsigned long *

);

5-129

C Programmer’s Reference

5-130

6

Visual Basic Reference Section

The AltaVista Search Developer's Kit includes an ActiveX component that greatly smplifies
development of applications using Visual Basic. The kit includes the following files:

avs26X_mt.dll for the AV SIndex Class.
avsevt26.dll for AV SDocument Class.

It is assumed that you have Visual Basic Version 5.0 installed on your system and are running
on Windows NT Version 4.0.

Naming Conventions
The naming conventions of variousindex properties and search results properties are:
iopt - Index options
sopt -Search options
sres - Search results

cres - Counts results

Class Avsindex

The AV SIndex abject contains the index methods and properties.

6-131

Visual Basic Reference Section

6-132

adddate function
Adds an additional date to the document.

Function adddate(year As Long, month As Long, day As Long,
startloc As Long) As Long

Argument
year Integer that specifies the year.
month Integer that specifies the month.
Day Integer that specifies the day.
dtartloc Location in the document for the date.
Description

The adddate function indexes the supplied date in standard format at the indicated | ocation.
Applications can submit advanced queries for specific dates or date ranges contained in afield
using the format fied:[date range]. This function can also be used to associate multiple dates

with a document.

Return Value

Returns 0 or an error code.

See Also

addfield

addliteral

addvalue

addword

setdocdate

setdocdatetime

Visual Basic Reference Section

addfield function
Adds afield to document

Function addfield(fieldName As String, startloc As Long, endloc
As Long)As Long

Argument
fieldName String that specifies the name of the field to be added to the index.
Startloc Location of thefirst word in thefield.
endloc Location of thefirst word that follows the field.
Description

The addfield function marks a set of locations in a document as belonging to afield. The
gtartloc and endloc arguments define the boundaries of the field. Application users can submit
queries for specific contents of the named field, using the format fieldname:value.

Return Value

Returns 0 or an error code.

See Also

adddate

addliteral

addvalue

addword

6-133

Visual Basic Reference Section

addliteral function

Adds aliteral string to the document.

‘ Function addliteral(word As String, startloc As Long) As Long

Argument

word Single string that specifies the word to add.

dtartloc Location in theindex of where to add the string to the index.
Description

The addliteral function adds a single word and without interpretation or conversion to a
document index.This function does not scan the literal string in any way, but rather addsit to
theindex asis. Use with caution or not at all, as words added this way are possibly not
searchable with the standard query procedures.

To perform a search when theliteral string you are looking for contains special characters (for
example, the forward dash (/)), you can use curly braces({}) in the Boolean (advanced) query
string as in the following example: { cnn/xyz} . All characters between the matching curly
braces are treated as a word, except the asterisk (*) which still works as awildcard.

Note: Words starting with a non-al phanumeric character are reserved for internal use.

Return Value

Returns 0 or an error code.

See Also

6-134

adddate
addfied
addliteral
addword

Visual Basic Reference Section

addvalue function

Adds a searchabl e val ue to the document.

Function addvalue(type_name As String, value As Long, startloc
As Long)As Long

Argument

type_name Name of a value type defined previously with define_valtype.
value The value (integer) of the type to be added to the index.
dtartloc Thelocation of the type in the index.

Description

The addval ue function indexes the supplied value at the specified location in theindex. Value
types are defined with the define_valtype function. The addval ue function allows the value to
be searched in a Boolean query expression, for example, [lines:1-100].

Return Value
Returns 0 or an error code.

See Also
adddate

addfield
addword
define_valtype

setrankval

6-135

Visual Basic Reference Section

addword function

Adds aword or words to a document.

Function addword(words As String, startloc As Long) As Long

Argument

words The words to add to the index.

dtartloc Location value to assign to thefirst word.
Description

The addword function adds words to the index. A word is defined as a contiguous string of
alphanumerics, bounded by non-al phanumerics (like spaces and special characters), as defined
in the SO Latin-1 standard.

This function should be called after startdoc. Call the addword_numwords property to get the
number of words added to the index.

Return Value
Returns 0 or an error code.

See Also
adddate

addfield
addliteral
addvalue

addword_numwords

6-136

Visual Basic Reference Section

addword_numwords property
Returns the number of words added.

Property addword_numwords As Long
read-only

Description

The addword_numwords property returns the number of words added to the index by the
addword function.

Return Value
Returns the number of words added to the index.

See Also
addword

6-137

Visual Basic Reference Section

avs_version property

Returns the version number of the Devel oper's Kit.

Property avs_version As String
read-only

Description

Theavs version function returnsalist of index version strings. Each string in thelist is
enclosed in double quotes (). Thelist contains information relevant to the product version,
such as, theimplementation version, the interface version, whether it is single or multi-
threaded, the build number, and the license version.

Return Value
Returnslist of index version strings.

6-138

Visual Basic Reference Section

buildmode function
Sets the index to buildmode.

‘Function buildmode(nTiers As Long) As Long

Argument

nTiers

The number of tiers (set of buckets) the index is alowed to use.

Description

The buildmode function optimizes the specified index for building or adding to the index.

Querying during this state would degrade the response to the query. This function could be
called from your application for those instances when you want to build an index and users
would be unlikdy to query the index. The new mode takes effect immediately. This state of the
index will beretained for the next time the index is opened, if acall to makestable or compact

is made.

Return Value

Returns 0 on success or an error code.

See Also
compact

makestable

6-139

Visual Basic Reference Section

close function

Closes theindex.

Function close () As Long

Description

The close function closes the specified index and rel eases all resources. Make sure you have
closed any outstanding search or counts handles before closing the index.

Return Value
Returns 0 or an error code.

See Also
makestable

open

6-140

Visual Basic Reference Section

compact function

Compacts an index.

‘ Function compact() AsLong

Description

The compact function causes one or more levels of compaction on the index. If the returned
value of acall to compact_moreneeded is O, the compaction is complete. If the returned value is
1, call the compact function again to further compact the index.

Y ou should compact the index periodically or after a series of updates is complete. Compacting
the index improves subsequent query performance and frees the space used by documents that
have been deleted. It is possible to submit search queriesto the index (in other threads) while it
is being compacted, but you cannot add, update, or delete information until compaction is
compl ete.

Return Value
Returns 0 or an error code.

See Also
compact

compact_moreneeded
makestable

6-141

Visual Basic Reference Section

compact_minor function

Performs minor index compaction.

‘ Function compact_minor () As Long

Description

The compact_minor function causes one or more levels of compaction on the index but without
recovering space from deleted index entries. Use this function when the effects of regular
compaction would be detrimental to your system resources. If a call to compact_moreneeded
returns avalue of 0, the compaction is complete. If compact_moreneeded returns 1, call the
compact_minor function again to further compact the index.

Y ou should compact the index periodically or after a series of updates is complete. Compacting
the index improves subsequent query performance. It is possible to submit search queriesto the
index whileit is being compacted, but you cannot add, update, or delete information until
compaction is complete.

Return Value
Returns 0 or an error code.

See Also
compact

compact_moreneeded
makestable

6-142

Visual Basic Reference Section

compact_moreneeded property

Returns a value which specifies if more compaction is needed.

Property compact_moreneeded As Long
read-only

Description

The compact_moreneeded property returnsavalue of 0 or 1. If thereturn is zero (0), thereisno
further compaction required on the index. If thereturn is 1, then more compaction is required.

Use this property in conjunction with compact and compact_minor functions.

Return Value
Returns a non-zero value if the index requires further compaction.

See Also
compact

compact_minor

makestable

6-143

Visual Basic Reference Section

compactionneeded function
Returns a compaction needed status.

‘Function compactionneeded() As Long

Description
The compactionneeded function returns non-zero value if the index needs compaction.

Return Value
Returns non-zero value if the index needs compaction.

See Also
compact

compact_minor
compact_moreneeded
makestable

6-144

Visual Basic Reference Section

count function

Counts word occurrences.

Function count(WordPrefix As String) As Long

Argument

WordPrefix The value of aword or portion of aword. All words that begin with this
character string are returned, one at atime, through the countnext function.

Description

The count function is used in conjunction with cres_countnext to enumerate index entries that
match the specified word or prefix.

The count is not adjusted for deletions if they have occurred since the last time the index has
been compacted.

To enumerate the entire contents of the index, use anull string ("*)for the WordPrefix
argument. This function will return a count handle for all index entries including those that
have been deleted.

The count function returns the counts handle or a-1 if thereisan error. To get the error, call
lasterror.

Return Value
Returns the counts handle or -1.

See Also

count_close
cres_countnext
cres word
cres_wordcount

lasterror

6-145

Visual Basic Reference Section

count_close function

Terminates a count.

‘Function count_close(counthandle As Long) As Long

Argument

counthandle The value of the counthandle.

Description

The count_close function closes a count request. After all calls to countnext are complete, call
count_close to release the resources allocated for the count.

Return Value
Returns 0 or an error code.

See Also

count
cres_countnext
cres word

cres_wordcount

6-146

Visual Basic Reference Section

cres_countnext function

Retrieves the next word occurrence.

Function cres_countnext(counthandle As Long) As Long

Argument

counthandle

The value of the counts handle from count.

Description

The cres_countnext function retrieves the next (or first) index entry that matches the prefix
specified in the count function. The properties cres word and cres_wordcount return the actual
word and the number of timesit occursin the index, respectively. The function returns a non-

zero status code there are no more word occurrences to retrieve.

Return Value

Returns a non-zero status code when there are no more word occurrences to retrieve.

See Also

count

count_close

cres word

cres_wordcount

6-147

Visual Basic Reference Section

cres_word property

Retrieves aword.

Property cres_word(counthandle As Long) As String
read-only

Argument

counthandle The value of the counts handle from the counts method.

Description

The cres_word property retrieves the word corresponding to the most recent call to
cres _countnext.

Return Value
Returns aword.

See Also

count
count_close
cres_countnext

cres_wordcount

6-148

Visual Basic Reference Section

cres_wordcount property

Retrieves the word count.

Property cres_wordcount(counthandle As Long) As Long
read-only

Argument

counthandle | Value of the counts handle from the counts method.

Description

The cres_wordcount property retrieves the word count corresponding to the most recent call to
cres _countnext.

Return Value
Returns the word count.

See Also

count
count_close
cres_countnext

cres word

6-149

Visual Basic Reference Section

6-150

define_valtype function

Defines a value type for ranking purposes.

Function define_valtype(name As String, minval As Long, maxval
As Long) As Long

Argument

name String that contains the name of the value type.
minval Long with the minimum value of the value type.
maxval Long with the maximum value of the value type.
Description

The define_valtype function lets you define your own value type which can be used to rank
search results. For example, you may define the value type lines to count the number of lines
per document. With the type name, you also must supply the lowest to the highest possible
values. In your application, use a call to setrankval function to set a ranking value for each
document in the index. To index the new type, call the addval ue function.

To use the value type to rank search results, use search_genrank function and pass the value
typein the RankTerms argument, for example, lines. To have the search resultsranked in
reverse order (lowest valuefirst), use-lines. .

To usethe value type in a Boolean search, use the search function. In the Bool Query argument,
use the syntax: [valtype:rrange], for example, [lines:1-500].

The define_valtype function is an application-wide function and, therefore, affects all the
indexes that are open. You must call define_valtype before you open the index. Call the
release valtypes function after the last call to close to release the resources associated with the
value types.

Return Value
Returns 0 or an error code.

See Also
addvalue

setrankval

Visual Basic Reference Section

define_valtype_multiple function

Defines a value type for filtering on multiple values.

Function define_valtype multiple(name As String, minval As
Long, maxval As Long, numvalues As
Long) As Long

Argument

Description
name String that contains the name of the value type.
minval Long with the minimum value of the value type.
maxval Long with the maximum value of the value type.
numvalues Maximum number of multiple filtering values.

Description

The define_valtype_multiple function lets you define your own value type to add a set of
values to a document.

Subsequently, these values can be used to filter search results. With the type name, you also
must supply the minimum to maximum range possible for values. The numvalues parameter
determines the maximum number of multiple values alowed for the valtype for each document.

In your filter application, use multiple callsto the setrankval function to set a value for each
document in the index.

To usethe value type to filter search results, use search_genrank function and use the value
typein the RankTerms argument. For example, [myval?(1,5)] filters the search results to those
documents that contain avalue of 1 or 5 in the myval valtype.

The define_valtype multiple function is an application-wide function and, therefore, effects all
the indexes that are open. You must call define_valtype multiple before you open the index.
Call therelease valtypes function after thelast call to close to rel ease the resources associated
with the value types.

Return Value
Returns 0 or an error code.

See Also
addvalue
define_valtype

setrankval

6-151

Visual Basic Reference Section

6-152

deletedoc function

Deletes a document with the specified document identifier.

Function deletedoc(docld As String) As Long

Argument

docld Case-sensitive string that identifies the document (limited to 120 bytes).

Description

The deletedoc function marks for deletion all documents with a specified docid (if any exist).
For the documents to actually be deleted you must call the makestable function. If you insert
the call to makestable immediately after the del etedoc function, the deletion will occur
immediately. To retrieve the number of documents deleted, call deletedoc_numdel eted.

Note: The docld string is case sensitive.

Return Value
Returns 0 or an error code.

See Also
compact

deletedoc_numdel eted
makestable

Visual Basic Reference Section

deletedoc_numdeleted
Returns the number of deleted documents.

Property deletedoc_numdeleted As Long
read-only

Description

The deletedoc_numdeleted property returns the number of documents deleted by del etedoc.
Use this property in conjunction with the function deletedoc

Return Value
Returns the number of documents which were deleted by del etedoc.

See Also
deletedoc

6-153

Visual Basic Reference Section

enddoc function

Terminates a document added with startdoc.

Function enddoc () As Long

Description

The enddoc function terminates a document created in the index by the startdoc function.
Document contents arehadded to the index by a call to startdoc and terminated by the enddoc
function.

Return Value
Returns 0 or an error code.

See Also
startdoc

6-154

Visual Basic Reference Section

errmsg function

Convertsan error codeto a string.

|Function errmsg(status As Long) As String

Argument

status

The error code returned from Avsindex functions.

Description

The errmsg function returns a text message associated with an error status code.

Return Value

Returns an error message text.

6-155

Visual Basic Reference Section

getindexmode property

Retrieves the current index mode.

Property getindexmode As Long
read-only

Description

The getindexmode property returns O if theindex isin query mode, or 1 if theindex isin build
mode. See Optimizing for speed to learn about build and query mode.

Return Value
ReturnsO or 1.

See Also
buildmode

compact

6-156

Visual Basic Reference Section

indexversion property

Retrieves the index version number.

Property indexversion As Long
read-only

Description

The indexversion property isused to return an integer value corresponding to the current
version of theindex. This value increases with each call to makestable, compact, or
compact_minor.

Return Value
Returns index version number.

6-157

Visual Basic Reference Section

iopt_cache_threshold property
Determines the cache threshold.

Property iopt_cache_threshold As Long

Description

Theiopt_cache threshold property determines the maximum size of the index file that will be
memory-mapped during an indexing process. The larger values will cause better performance
but require larger amounts of virtual memory to be available. The default valueis 500000 (0.5
MB).

Return Value
None, thisis awrite-only property.

See Also
iopt_ignored_threshold

6-158

Visual Basic Reference Section

iopt_chars_before_wildcard property

Determines the number of characters required before a wildcard search.

‘ Property iopt_chars _before wildcard As Integer

Description

Theiopt_chars before wildcard property provides the ability to change the number of
characters before the wildcard (*) from the default of 3. The number can be zero (0) or greater.

Return Value
None, thisis awrite-only property.

6-159

Visual Basic Reference Section

iopt_charset property
Setsthe character set for the index.

‘ Property iopt_charset As Integer

Description

Theiopt_charset property provides the ahility to change the character set from the default set of
ISO Latin 1to UTF8 or ASCII 8 . The values of the respective character setsare:

ISO Latin 1 0
UTF8 1
ASCII 8 2

Return Value
None, thisis awrite-only property.

6-160

Visual Basic Reference Section

iopt_enable _rankbydate property
Enables or disables the rank-by-date feature.

‘ Property iopt_enable_rankbydate As Integer

Description

Theiopt_enable rankbydate property enables the search method to rank the results using the
date of the document.

By default, this property is enabled and effects all searches performed on the index. If the
integer is zero (0), thisfeature is disabled.

Return Value
Returns nothing.

See Also
iopt_enable_searchbydate

6-161

Visual Basic Reference Section

iopt_enable _searchbydate property
Enables or disables the search-by-date feature.

‘ Property iopt_enable_searchbydate As Integer

Description

Theiopt_enable searchbydate property enables the search method to return documents that
match the specified date of the search criteria. By default, this property is enabled and effects
all searches performed on the index. If theinteger is zero (0), theiopt_enable searchbydate
property is disabled.

Return Value
Returns nathing.

See Also
sopt_rank_to_boolean

6-162

Visual Basic Reference Section

iopt_enable _searchsince property

Enables or disables the search-since feature.

‘ Property iopt_enable_searchsince As Integer

Description

Theiopt_enable searchsince property enables the search method to return documents added
since the last search operation. By default, this property is enabled and effects all searches
performed on the index. If theinteger is zero (0), theiopt_enable searchsince property is
disabled.

Return Value
Returns nathing.

See Also
iopt_enable_rankbydate

iopt_enable searchbydate
search
search_genrank

sopt_rank_to_boolean

6-163

Visual Basic Reference Section

6-164

iopt_ignored_threshold property

Sets the ignored-threshold feature.

Property iopt_ignored_threshold As Long

Description

Theiopt_ignored_threshold property isthe number given in one hundredths of a percent (for
example, 1000 is 10 percent) that controls when aranking term isto be ignored. Any ranking
terms whose occurrences in the index account for a greater percentage of the total percentages
than this number isignored for ranking purposes. The default valueis 1000 or 10 percent.

Return Value
Returns nathing.

See Also
iopt_cache_threshold

iopt_indexformat property

Sets the current index format version number.

Visual Basic Reference Section

‘ Property iopt_indexformat As Integer

Description

Theiopt_indexformat property sets the value of the current index format as follows:

Value | Description

0 Default (now Version 2)
1 Version 1

2 Version 2

The Version 2 index format generates a dightly larger index (approximately 10% larger), but it
isdightly faster to search than in index an Version 1 format.

Return Value

None.

6-165

Visual Basic Reference Section

6-166

iopt_nbuckets property

Sets the number of buckets used by the index.

Property iopt_nbuckets As Integer

Description

Theiopt_nbuckets property determines the maximum number of buckets the index is allowed
to use. Buckets are the hash modulus for splitting the index by word. The value of this property
determines the number of the index files across which index entries are spread (by hashing). If
this number isincreased, the number of index filesisincreased but the size of the individual
files should be smaller. The maximum number of buckets allowed is 500 and is set in the avs.h
file.

The nbuckets and ntiers are index scaling properties that you can use to tune your system's
memory configuration parameters.

Tiers are the sets of buckets the index is allowed to use. Thetiers parameter value determines
the maximum number of sets of buckets to which the index can grow during operations that
add, delete, or update the index. Each call to avs makestable creates a new tier in the index,
and callsto avs_compact or avs_compact_minor are then used to reduce the tiers again.

When building avery largeindex, it is better to have alarger value asit reduces the number of
compactions needed during building. However, query operations may take longer when more
tiersarein use (moreindex files to examine for each index entry). The default values of tiers
can be tuned with a nominal range of values from 4 - 40. Smaller values are appropriate for
more searching, while the larger values are appropriate for more indexing.

Return Value
Returns nathing.

See Also
iopt_ntiers

Visual Basic Reference Section

iopt_ntiers property
Sets the number of tiers used by the index.

‘ Property iopt_ntiers As Integer

Description

Theiopt_ntiers property determines the maximum number of sets of buckets to which the index
can grow during operations that add, delete, or update the index. The nbuckets and ntiers are
index scaling properties that you can use to tune your system's memory configuration
parameters. Each call to avs makestable creates a new tier in the index, and callsto
avs_compact or avs_compact_minor are then used to reduce the tiers again. The default values
can be tuned with a nominal range of values from 4 - 40. Smaller values are appropriate for
more searching, while the larger values are appropriate for more indexing.

Buckets are the hash modulus for splitting the index by word. The value of this property
determines the number of the index files across which index entries are spread (by hashing). If
this number isincreased, the number of index filesisincreased but the size of the individual
files should be smaller. The maximum number of buckets allowed is 500 and is set in theavs.h
file.

When building avery largeindex, it is better to have alarger value asit reduces the number of
compactions needed during building. However, query operations may take longer when more
tiersarein use (more index files to examine for each index entry).

Return Value
Returns nothing.

See Also
iopt_nbuckets

6-167

Visual Basic Reference Section

lopt_parsesgml property
Parses SGML tags during indexing.

‘Property iopt_parsesgml as Integer

Description

Theiopt_parsesgml property enables or disables the parsing of SGML tags during indexing.
Currently, either zero (0) or 1 isthe only valid value for this property. When the flag is set to 1,
it enables the indexer to recognize SGML encoded entities as characters and add words
containing those characters to the index. For example, & eacute; isthe SGML encoding for e
with the acute accent.

Return Value
Returns nothing.

6-168

Visual Basic Reference Section

iopt_unlimited_wild_words property

Sets the number of words returned by wildcard searches to unlimited.

‘ Property iopt_unlimited_wild_words As Integer

Description

Theiopt_unlimited wild_words property sets the number of words returned by awild card
search to unlimited. The default value is 50 words matching the query. If more than 50 words
match the query, the results are ranked by frequency. This does not effect the ranking done by a
Boolean search.

Return Value
Returns nathing.

See Also
iopt_chars_before wildcard

6-169

Visual Basic Reference Section

lasterror property

Returnsthe last error from search, counts, or search_genrank.

Property lasterror As Long
read only

Description

The lasterror property returnsthe last error from the search, counts or search_genrank
functions. Thisisusually an error related to an index, search, or counts handle. If the search or
counts handleis -1, use this property to determine the error status.

Return Value
Returns an error status.

See Also
addword

6-170

Visual Basic Reference Section

makestable function
Makes the index stable.

‘Function makestable() As Long

Description

The makestable function saves recent deletions or additions made to the index file. The
documents and words added to the index are flushed to the disk, and all documents marked for
deletion by a previous call to deletedoc, are deleted. This function should be called before
closing theindex and after every 500,000 or so words have been indexed.

The makestable function finishes the job of adding and del eting documents and makes the
newly added documents searchable while removing the documents marked for deletion by the
deletedoc function.

The application should also compact the index after a series of updatesis completed, to
improve subsequent query performance and to recover space from deleted entries.

Return Value
Returns 0 or an error code.

See Also
compact

compact_minor

sopt_rank_to_boolean

6-171

Visual Basic Reference Section

6-172

open function

Opens an index.

Function open(path As String, mode As String) As Long

Argument

path Thefull or relative path of the index directory on disk.

mode | Specifies whether the index should be opened as aread only (r) or aread write
(rw) index.

Description

The open function opens the index pointed to by the path argument. The mode parameter can
be either "r" for read only, "rw" for read-write, and "ro" for CD-ROM. When "rw" is set, the
index is opened for reading and writing. Appropriate locks are set to interlock reads and
updatesin other processes.

Note: The directory specified by path must exist. If the directory specified by path is empty, a
new index will be created with the correct permissions.

Return Value
Returns 0 or an error code.

See Also
close

Visual Basic Reference Section

guerymode
Sets an index to query mode.

Function querymode() As Long

Description

The querymode function optimizes an index for response to user queries. Thisalows usersto
get optimal responsein querying the index when use of the query interface is high. The new
mode takes effect immediately. To retain this state for the next time the index is opened, you
must make a call to the makestable or compact functions.

When your program calls this function, it causes a full compaction of the index.

Return Value
Returns 0 or an error code.

See Also
buildmode

6-173

Visual Basic Reference Section

release_valtypes function
Rel eases any val ue types have been defined.

‘ Function release valtypes() As Long

Description

Therelease valtypes function releases any value types that have been defined. This function
should only be called after your application’'s last call to close.

Return Value
Returns 0 or an error code.

See Also
define_valtype

6-174

Visual Basic Reference Section

search function
Searches the index.

Function search(SimpleQuery As String, BoolQuery As String,
SearchSince As String) As Long

Argument
SimpleQuery Simple (or ranking) query expression. May be NULL.
Bool Query A boolean query expression. May be NULL.
SearchSince Version string or NULL.

Description

The search function initializes a search for documentsin an index file that match asimple
guery expression and the given search parameters. A smple query expression can contain
words, phrases, the asterisk (*) wildcard character, and the + and - operators, which require or
prohibit the presence of aword in the search results.

Given asimple query expression and other search parameters (like date ranges, boolean
qualifier, and so forth) this function searches the index and returns a handle which can be used
toretrieve:

the number of documents found

the number of documents actually returned for inspection
specific search results corresponding to a document

the matching terms from the query expression

It is possible to use thisinterface to perform consistently with either the AltaVistasmple
search or the AltaVista advanced search function (as seen at http://altavista.digital.com). You
can also effectively combine both approachesin one call.

To Perform a Simple Search

Use the pQuery argument to point to the simple query string. Do not use the pBoolean
argument. Set the sopt_ranktoboolean property to 1.

To Perform an Advanced Sear ch

Use the pQuery argument to point to ranking terms. Use the pBoolean argument to point to the
advanced query string. Set the sopt_ranktobool ean property to O.

The Combined Approach -- Simple Query with Boolean Qualifiers

Use the pQuery argument to point to the smple query string and use the pBoolean argument to
point to the advanced query string. Set the sopt_ranktoboolean property flag to 1. In this case,
the behavior isthat of the smple query, filtered by the boolean expression, that is, the results
are the intersection of what would be produced by the ssimple query and the boolean query

Separately.

The search function returns the search handle as the value of the method or a-1 for an error. To
get the error, call lasterror. For more information, see Searching the Index. In all cases, the
results are ranked according to the relative weighted occurence of the (non-negative) termsin
the simple query (or ranking) string. If there are no such terms, the result is unranked.

6-175

Visual Basic Reference Section

Return Value
Returns the search handle as the value of the method or -1.

See Also
search_genrank

search_getterms
sres day
sres_docdata

sres docid
sres_docsfound
sres_docsreturned
sres_month

sres relevance
sres_searchversion
sres_termcount

sres year

6-176

search_close function

Terminates a search.

Visual Basic Reference Section

‘Function search_close(searchhandle As Long) As Long

Argument

searchhandle

The search handle from search or search_genrank.

Description

The search_close function closes a search. This must be called when all callsto
search_getresults are completed, to release the resources allocated for a search.

Return Value
Returns 0 or an error code.

See Also
search

search_genrank

6-177

Visual Basic Reference Section

6-178

search_genrank function

Searches an index and ranks the results.

Function search genrank(BoolQuery As String, RankTerms As
String, SearchSince As String) As Long|

Argument

Bool Query A Boolean query expression or NULL.

RankTerms A string containing the ranking terms.

SearchSince A search version string.

Description

The search_genrank function enables you search for the extended val ue types added by the
addvalue function. This function lets you search for the boolean query expression and rank the
results using the ranking expression. The RankTerms argument in the search_genrank function
can be either a predefined term (for example, #date) or an application-defined value type (for
example, lines). To rank theresultsin reverse order, that is, lowest value first, precede theterm
with aminussign (-), for example, -#date or -lines.

The search_genrank function returns the search handle or -1 if thereisan error. To get the
error, call lasterror.

Return Value
Returns the search handle as the value of the method or -1.

See Also
lasterror

search

search_close

Visual Basic Reference Section

search_getresults function

Gets the search results.

Function search_getresults(searchhandle As Long, resultnum As
Long) As Long

Argument

searchhandle The search handle from search or search_genrank.
resultnum The number of results.

Description

The search_getresults function is used to retrieve specific search results after calling the search
or search_genrank functions. An ordinal value specifies which result to retrieve. Thisordina
must be a value between 0 and the number of documents returned by sres_docsreturned
property minus 1. This function retrieves various document attributes, such as, relevancy value,
document date, document identifier, and document data and makes the attributes value
available through the search results handle.

Return Value
Returns the search results.

See Also
search

search_close

search_genrank

6-179

Visual Basic Reference Section

search_getterms function

Retrieves matching search terms from the query.

Function search_getterms(searchhandle As Long, resultnum As
Long) As Long

Argument

searchhandle The search handle from search or search_genrank.

resulthum The number of results.

Description

The search_getterms function is used to retrieve the terms and term statistics for the specified
search from search or search_genrank functions.

Theterm to retrieve isthe O-relative result number specified in the sres_numterms property.
Call sres termsto retrieve the term string. Use sres_termcount to determine the number of
matches of the term string.

Return Value
Returns the search terms.

See Also
search

search_close
search_genrank
sres numterms

sres_termcount

6-180

Visual Basic Reference Section

setdocdatastr function
Sets the document data.

‘Function setdocdatastr(docData As String) As Long

Argument

docData The string containing the document data.

Description

The setdocdatastr function sets the document's data (for example, the title of the document or
other descriptive information) Call this function after analyzing the document's content and
between startdoc and enddoc functions. The data is made available by a successful search. The
maximum length of the document data string is 64,000 bytes.

Return Value
Returns 0 or an error code.

See Also
enddoc

startdoc

6-181

Visual Basic Reference Section

6-182

setdocdate function
Sets the document date.

Function setdocdate(year As Long, month As Long, day As Long)

As Long
Argument
year The year greater than 0100 but less than 2148.
month The month of the year from 1 to 12.
day The day of the month from 1 to 31.
Description

The setdocdate function sets the date of the document and is called between the startdoc and
enddoc functions.

The date isreturned in the search results and can be retrieved by calling sres_day, sres month,
and sres _year on the search results handle. Dates are indexed and can be used to limit searches
by adding a date range as an additional term in the boolean query string argument passed to

search.

The date and time (see setdocdatetime)can al so be used to order search results. For further
information see search_genrank.

Return Value

Returns 0 or an error code.

See Also

setdocdatetime

Visual Basic Reference Section

setdocdatetime function

Sets the document date and time.

Function setdocdatetime(year As Long, month As Long,
day As Long, hour As Long, minute As Long, second As Long)
As Long
Argument
year The year greater than 0100 but less than 2148.
month The month of the year from 1 to 12.
day The day of the month from 1 to 31.
hour The hour from 0 to 23.
minute The minute from O to 59.
second The seconds from O to 59.
Description

The setdocdatetime function sets the date and time of the document and is called between the
startdoc and enddoc functions..

The date isreturned in the search results and can be retrieved by calling sres_day, sres month,
and sres _year on the search results handle. Dates are indexed and can be used to limit searches
by adding a date range as an additional term in the boolean query string argument passed to
search. Dates can also be used to rank search results, see search_genrank for more details.

This function provides a higher degree of precision in the date assigned to a document (to 1
second) than setdocdate.

Return Value
Returns 0 or an error code.

See Also
setdocdate

6-183

Visual Basic Reference Section

setrankval function

Adds a ranking value to the document.

Function setrankval (type_name As String, value As Long) As Long

Argument

type_name Name of the val ue type to be added.

Value Integer value for the type.

Description

The setrankval function adds a numeric value to a document index that can be used for ranking.
A given value type should be used at most once in a document. To use the value as aranking
term in a search, see the search_genrank function

Return Value
Returns 0 or an error code.

See Also
addvalue

define_valtype

6-184

Visual Basic Reference Section

sopt_doclimit property

Sets the maximum number of documents to return from a search.

‘ Property sopt_doclimit As Long

Description

The sopt_doclimit property is awrite-only property which limits the number of documents that
can be returned in a search or search_genrank result. The default value for the maximum
number of documents returned is 32,000.

Return Value
Returns nathing.

See Also
sopt_rank_to_boolean

sres_docdata

sres docid

6-185

Visual Basic Reference Section

sopt_rank _to_boolean property
Setsthe rank to boolean option.

‘ Property sopt_rank _to boolean As Integer

Description

The sopt_rank_to_boolean property when the value is non-zero directs the subsequent call to
the search method to limit the search to documents which match the Boolean expression and
have at least one of the ranking terms. By default, this call is enabled. Typically, this property
reduces the number of documents found.

Return Value
Returns nathing.

See Also
sopt_doclimit

6-186

Visual Basic Reference Section

sres_day property
Returns the day of the document date.

Property sres_day(searchhandle As Long) As Integer
read-only

Argument

searchhandle Search handle for search or search_genrank.

Description

The sres_day function retrieves the day of the year value of a document's date. Call this
function after calling search_getresults.

Return Value
Returns the day of the year value.

See Also
sres_month

sres year

6-187

Visual Basic Reference Section

sres_docdata property

Retrieves the document data string from the search results.

Property sres_docdata(searchhandle As Long) As String
read-only

Argument

Searchhandle The search handle from search or search_genrank

Description
The sres_docdata property retrieves the document data string from the search results.

Return Value
Returns the document data string.

See Also
search_getresults

sres docid

6-188

Visual Basic Reference Section

sres_docid property

Retrieves the document identifier.

Property sres_docid(searchhandle As Long) As String
read-only

Argument

searchhandle | The search handle from search or search_genrank.

Description
The sres_docid property retrieves the document identifier from the search result.

Return Value
Returns the document indentifier string.

See Also
sres_docdata

sopt_doclimit

6-189

Visual Basic Reference Section

sres_docsfound property

Retrieves the number of documents found from a search.

Property sres_docsfound(searchhandle As Long) As Long
read-only

Argument

searchhandle | The search handle from search or search_genrank.

Description
The sres_docsfound property retrieves the number of documents found after a search.

Return Value
Returns the number of documents found.

See Also
sres_docsreturned

6-190

Visual Basic Reference Section

sres_docsreturned property

Retrieves the number of documents returned.

Property sres_docsreturned(searchhandle As Long) As Long
read-only

Argument
searchhandle The search handle from search or search_genrank.

Description
The sres_docsreturned property retrieves the number of documents returned from a search.

Return Value
Returns the number of documents returned.

See Also
sopt_doclimit

sres_docsfound

6-191

Visual Basic Reference Section

sres_month property

Returns the month of the year associated with the document.

Property sres_month(searchhandle As Long) As Integer
read-only

Argument

searchhandle | Search handle from search or search_genrank.

Description

The sres_month function retrieves the month of the year value of a document's date. Call this
function after calling search_getresults.

Return Value
Returns the month of the year value.

See Also
search_getresults

sres _day

sres year

6-192

Visual Basic Reference Section

sres_numterms property

Returns the number of matching terms from a search.

Property sres_numterms(searchhandle As Long) As Long
read-only

Argument

searchhandle The search handle from a search.

Description

The sres_numterms property returns the number of matching terms found from a search. Call
this property after a call to search. Note: This property is not valid for search_genrank.

Return Value
Returns the number of matching terms.

See Also
search_close

sres term

sres_termcount

6-193

Visual Basic Reference Section

sres_relevance property

Returns the relevance value of search result.

Property sres_relevance(searchhandle As Long) As Single
read-only

Argument

searchhandle The search handle from search or search_genrank.

Description

The sres_relevance property retrieves the relevancy value of a document returned with
search_getresults.

Return Value
Returnsthe relevancy value.

See Also
search_getresults

6-194

Visual Basic Reference Section

sres_searchversion property

Returns the version string of the current search.

Property sres_searchversion(searchhandle As Long) As String
read-only

Argument

searchhandle Required. Always the Err object.

Description

The sres_searchversion property retrieves the version number of the current search. This
version number can be stored for later use in the SearchSince argument of the search and
search_genrank functions.

Return Value
Returns a version string.

See Also
search_close

search_genrank

6-195

Visual Basic Reference Section

sres_term property

Returns the nth matching term from the query.

Property sres_term(searchhandle As Long) As String
read-only

Argument

searchhandle | Search handle from a search.

Description
The sres_term property retrieves the nth matching term of the query.

Return Value
Returns a string.

See Also
search_close

search_genrank

6-196

Visual Basic Reference Section

sres_termcount property

Returns the term count of the nth matching term.

Property sres_termcount(searchhandle As Long) As Long
read-only

Argument

searchhandle The search handle from search or search_genrank.

Description

The sres_termcount property retrieves the number of matches of the nth matching term. This
property should be used after a call to search, and in conjunction with search_getterms and
sres term to retrieve the terms and term counts.

Return Value
Returns the term count of the nth matching term.

See Also
search_getterms
sres_docsfound
sres_docsreturned

sres term

6-197

Visual Basic Reference Section

sres_year property

Returns the year value of the document date.

Property sres_year(searchhandle As Long) As Integer
read-only

Argument

searchhandle | The search handle from search or search_genrank.

Description

The sres_year property retrieves the year value of a document's date. Call this function after
caling sres_getsearchresults.

Return Value
Returns the year value.

See Also
search_getterms

sres_docsfound
sres day
sres_docsreturned
sres_month

sres term

6-198

Visual Basic Reference Section

startdoc function

Adds a document to the index.

‘Function startdoc(docid As String, flags As Long) As Long

Argument

docid String that names the document (limited to 120 bytes).

Flags Sets the conditions for creating a new document. The conditions can have the
following flags:

0 Does not matter whether the document already exists. If it does not
exist, createit. If it does exist, replace it.

1 New document. The docid must not already exist.
2 Replace an existing document.

4 Duplicate document 1Ds are allowed. If a document with the same ID
already exists, another one can also be created.

Description

The startdoc function creates a new document in the index. This function must be used with a
call to enddoc to bracket the beginning and end of the document to be added to the index.

Thefirst location available in the index for the document is returned through a call to
startdoc_startloc property. Usethisin thefirst call to the addword function or smilar kinds on
functions. When you are finished adding document contents, call the enddoc function to
terminate the document.

Return Value
Returns 0 or an error code.

See Also
adddate

addfied
addliteral
addvalue
addword
addword
enddoc
setdocdatastr
setdocdate

setrankval

6-199

Visual Basic Reference Section

startdoc_startloc property

Returns the starting location of the document in the index.

Property startdoc_startloc As Long
read-only

Description

The startdoc_startloc property returns the starting location of the document in the index. This
property isused in conjunction with startdoc and addword.

Return Value
Returns the starting location of the document.

See Also
addword

search_getresults
sres day
sres_month

startdoc

6-200

Visual Basic Reference Section

AVSIndex Constants

Congtants are meaningful names that take the place of a numbers or strings, and remain fixed.
The following are constants or global variables for the AV SIndex Class:

Constant

Description

avs_adddoc_io_err

I/O error in ni2_index_adddoclist

avs_badargs_err

Invalid arguments (for example, null pointer)

avs_compact_io_err

[/O error in ni2_index_compact

avs_counts_err

Counts object has no counts context (VB, C++ APl)

avs_cvt_err

Document converter error

avs_cvt_unsuptype

Unsupported document type conversion.

avs_date_err

Date out of range

avs_doc_exists

Document already exists

avs_doc_limit_err

<= 0 documents specified

avs_doc_notfound

Document not found (locate)

avs_docdata_err

Document data too long

avs_docid_err

Document identification too long

avs_doclist_err

Error creating doclist

avs_field_err

Field processing error

avs_fileio_err

Converter: filel/O error

avs_filter_err

Filter error

avs_getdata_err

Could not get data (ni2_index_getdata)

avs_index_err

Index object has no context (VB, C++ APl)

avs_license_expired

Evaluation or beta license expired

avs_lock_err

Cannot acquireindex locks

avs_malloc_err

Cannot allocate memory

avs_mkstable io_err

I/O error in ni2_index_makestable

avs_mkvis_io_err

I/O error in ni2_index_makevisible

avs_nametoolong_err

Value type name too long

6-201

Visual Basic Reference Section

6-202

Constant

Description

avs_nomore_words

No more words to return from counts

avs_ok

Success

avs_open_err

Cannot open or create an index

avs_outofrange_err

Value out of range

avs_parse_err

Trouble parsing query

avs_rankterm_err

Unknown ranking term

avs_resultnum_err

Invalid result number specified

avs_search_err

Search object has no search context (VB,C++ api)

avs_startdoc_err

Startdoc/enddoc sequence error

avs_sync_err

Error synchronizing the read lock

avs_unk_exception_err

Unhandled exception error (C++ api)

avs_update_err

Index not open for update

avs_version_err

Caller/library version mismatch

Document Conversion API

A new document converter API that converts various document types to text is now available
with thisrelease. This APl embodies document conversion technol ogies from Inso Corporation,
Adobe Systems Inc., and Compagq Computer Corporation. Currently, conversion to HTML is

only supported for PDF documents.

Visual Basic Reference Section

Class AvsDocument

The AvsDocument object the contains document converter methods and properties.

6-203

Visual Basic Reference Section

6-204

convert_file2html function

Converts a document to HTML.

Function convert_file2html (DocPath As String, TextPath As
String) As Long

Argument

DocPath

The path of the document to be converted.

TextPath

The path of the converted text document.

Description

The convert_file2zhtml function converts the specified fileto an HTML file. Y ou must supply
the path of the file to be converted and the path of the output file. Currently, only PDF files can
be converted to HTML.

Return Value

Returns 0 or an error code.

See Also

convert_file2text

cvterrmsg

Visual Basic Reference Section

convert_file2text function

Converts a document to text.

Function convert_file2text(DocPath As String, TextPath As
String) As Long

Argument

DocPath The path of the document to be converted.
TextPath The path of the converted text document.
Description

The convert_file2text function converts a document to text. Y ou must specify the pathname to
the document to be converted as well as specify a pathname to the file which is to contain the
converted text. The document contents are analyzed before conversion to determine the
document type.

Note: The file containing the converted text may contain no line ending characters. For more
information on thefile types available for conversion, seethe File Types Tablein the C
Reference Manual.

Return Value
Returns 0 or an error code.

See Also
convert_filezhtml

cvterrmsg

6-205

Visual Basic Reference Section

cvterrmsg function

Converts the document converter status code to a string.

‘Function cvterrmsg(status As Long) As String

Argument

status The error status code from the document object.

Description

The cvterrmsg function converts the document converter status code to a string. Use the
lastevterr method to obtain the status code.

Return Value
Returns 0 or an error code.

See Also
convert_file2text

convert_filezhtml
ermsg

|astevterr

6-206

Visual Basic Reference Section

errmsg function

Converts error status code to string.

Function errmsg(status As Long) As String

Argument

status The error status code from the document object.

Description

The errmsg function convertsthe AVS error status code to a string. Use the lasterror method to
obtain the status code.

Return Value
Returns 0 or an error code.

See Also
convert_file2text

convert_filezhtml

cvterrmsg

6-207

Visual Basic Reference Section

lastcvterr property

Gets last document converter error.

‘Property lastcvterror As Long read-only

Description

The lastevterror property retrieves the last document converter error. Use this property to get
specific document converter error code if any of the document converter methods returns
status=avs cvterr.

Return Value
Returns 0 or an error code.

See Also
cvterrmsg

errmsgy

lasterror

6-208

Visual Basic Reference Section

lasterror pro perty
Getsthelast error code.

Property lasterror As Long
read-only

Description

The lasterror property retrieves the last error status code. Use this property to get the specific
AVSerror codeif any of the document converter methods fails. Thisis useful when using the
Visual Basic On Error statement.

Return Value
Returns 0 or an error code.

See Also
cvterrmsg

errmsgy

|astevterr

6-209

Visual Basic Reference Section

opt_cvtpath property

Sets the document converter input pathname.

Property opt_cvtpath As String
read-only

Description

The opt_cvtpath property sets the document converter input pathname. The dictionary file,
which is used by the PostScript filter, must exist in this directory.

Return Value
Returns 0 or an error code.

See Also
cvterrmsg

errmsgy

|astevterr

6-210

Visual Basic Reference Section

AVSDocument Constants

Constant Description

avs_cvter Document converter error.

avs_dictionary_err | Unableto open postscript dictionary file.

avs_ok Indi cates success.

6-211

