
Hidden Internet connections

Part 2 - Intermezzo - The Internet

written by Steinowitz

November 1999

1 Before we start

I could have omitted this essay in this series, but it would have been wrong.
Simply because I’d have to assume that you have a certain knowledge about
the Internet which you may or may not have. Therefore, to make sure that you
have this knowledge about the Internet, I’ll write a whole essay on this subject.

Essays somehow related to this one are ‘Reversing website visitor informa-
tion’ and ‘Gaining access to secured website’, which I’ve both written in Novem-
ber 1999. You can find them on the DREADed website. (The URL is at the
bottom of this document.) And, of course, there’s much more information on
this subject.

2 From IP address to protocol

We all know that the Internet is nothing but an immense number of computers
all connected to eachother. That’s not really true. The most important about
the Internet is that all computers are able to communicate with all other com-
puters connected to the Internet. It doesn’t matter which processor architecture
is used, it doesn’t matter what operating system is running, they’re all able to
communicate!

You can’t achieve this by just connecting some computers, you need a set of
very good ‘communication rules’ which all computers know and obey. If, and
only if, this is the case, you can create a network as large as the Internet.

Why all these stupid thoughts, you may wonder. But I don’t write them
down without reason. I want you to learn more about the ‘communication rules’
of the Internet. When you get to know them, it becomes much easier to reverse
programs dealing with Internet connections.

Everything in this essay will be software-oriented: sometimes, it may seem
to you as if we are dealing with hardware items. (For example, you may already
have seen the header ‘Ports’.) But that won’t be the case. We aren’t dealing
with hardware, we aren’t dealing with physical connections. We use them, that’s
all.

1



2.1 IP address

2.1.1 Unique address

It would be rather useless if we would connect all those computers using the
networks if we wouldn’t be able to for those computers to communicate with
others. But how do we achieve this? We would need to assign a unique address
to each computer! That’s exactly what an IP address is: a unique address each
computer connected to the Internet has.

An IP address looks like this:

xxx.xxx.xxx.xxx where xxx is a number in the range 0-255

The only exception on this is the first number: it must be at least 1. It’s
no coincedence that this range is from 0 to 255: each number of an IP address
could be coded with 8 bits. The complete IP address could therefore be coded
in only 32 bits!

One computer may have multiple IP addresses. Especially for large servers,
this can be useful. On the contrary, multiple computers may not have the same
IP address! Otherwise, the whole idea of a unique address would be gone!

You now know in which ranges the numbers of an IP address have to be. How
about calculating the maximum number of computers which could be (directly)
connected to the Internet? (I must say ‘directly’, because there are ways to
access the Internet without having an IP address. More on this later.)

2.1.2 Dynamic and static IP addresses

You now know the number of computers which could be connected to the In-
ternet is not infinite. An Internet provider (ISP) can’t say: well, we’re out of
IP addresses right now, but we’ll think of some new ones. That’s impossible.
Companies, universities and ISP’s can request a certain number of IP addresses
and it’s possible that a certain range of IP addresses is then assigned to the
requester. Once assigned, only the association the IP addresses are assigned to
are allowed to use these (until they declare that they don’t need them anymore).

What does an ISP when it has more clients with dial up accounts than IP
addresses? The ISP uses dynamic IP addresses. Each time a client dials up, the
dial up server assigns one of the available IP addresses to this computer. And
when the computer hangs up, the IP address is ready for use by someone else.

There are also many computers which have a static IP address, which means
that this computer always has the same IP address when it’s online. Webservers
(which are online all day long) should have static IP addresses. How could we
reach them otherwise? We originally wanted to assign IP addresses to make sure
that we would have a unique addresses we could use to reach other computers!

2.2 Hostnames and DNS

It would be rather difficult for us if we would have to remember the IP ad-
dresses of all computers we would like to get information from. How about
surfing the web, for example. Would you like surfing to 212.23.34.45 instead
of www.target.com? I know what I like better! Imagine how all advertisements

2



would change - no longer the easy-to-rememer www.company.com, but only dif-
ficult IP addresses. . .

Now that we have a (numerical) unique address for each computer connected
to the Internet, it’s getting time to register names for our computers. When
you have a computer with a static IP address, you can register a domain name.
A domain consists of a name and a country code: cjb.net, search.nl, yahoo.com,
etc.

When you register such a domain name (which is not free!), you have to state
the IP address of your computer. You also need a DNS service. DNS stands for
Domain Name Service. This Internet service makes it possible to lookup the IP
address of a computer when you have a hostname. It’s also possible to lookup
the hostname when you have an IP address.

For example, when you tell your browser to go to www.target.com, your
browser asks a DNS server what the IP address of www.target.com is. The
browser then contacts the target computer using the give IP address and re-
quests the files of the website at that webserver.

Once you have a domain name and a computer with an IP address the
domain name ‘redirects’ to, it’s possible for you to create ‘subdomains’. sub-
domain.target.com is a subdomain of target.com. The large benefit of these
subdomains is that you can do several things with them: you could assign sub-
domains to computers with different IP addresses than the ‘main’ computer,
but you could also use the subdomain to decide which website on the ‘main’
computer the visitor wants to visit.

If you have a normal dial up account and your ISP uses dynamic IP addresses,
you’ll probably have a hostname like 98acab27.ipt.aol.com while your online.
(Keep in mind that your IP address changes every time you dial up and that your
hostname therefore also changes a little!) As you see, there may be subdomains
of subdomains: 98acab27.ipt.aol.com is a subdomain of ipt.aol.com. On the
other hand, if your ISP uses static IP addresses, your hostname while you’re
online will probably look like username.isp.com.

One last remark: an IP address has to be a unique address for only one
single computer. A hostname is unique, but it’s not necessarily assigned to only
one computer.

2.3 Ports

We know what an IP address is, we know what a hostname is, but we still have
a little problem when we want to connect to our remote host. Many servers
provide many different services at the same time: FTP, WWW, Telnet, SSH,
time, etc. How does a server know what we want when we connect? A server
wouldn’t understand this: ‘I’d like to get file X from the rootdirectory. I’m
sorry, but I don’t know if it must be file X in the FTP root or file X in the
WWW root.’

This wouldn’t work. We need a way to distinguish between FTP and WWW.
Especially because each Internet service is provided by a different program and
a remote host can only connect to one of these programs.

There is a very nice solution to this: each computer connected to the Internet
has a large number of (virtual!) ports. To be more accurate: each computer
has 65,536 ports (could be coded with only 16 bits!). IS THIS CORRECT?
I DON’T REMEMBER EXACTLY

3



Whenever we connect to a remote host, we connect to a certain port. We
don’t see this very often, but it’s true. When we don’t specify a port, our
browser will automatically connect to port 80, because that’s the port for the
WWW. We could specify a port if we would need to: www.target.com:300. Our
browser would lookup the IP address belonging to this hostname and it would
subsequently try to connect port 300 of that computer.

We’ll probably get an error message if we do this: the webserver software
isn’t listening to port 300, it’s only listening to port 80! I just introduced a new
term: a program can listen to a certain port. Client programs want to connect
to other computers and connect to a certain port. Server programs, on the other
hand, are listening to one or more port(s) and can accept any connections from
outside. A port may not be used by more than one program at the same time.

2.4 Protocol

2.4.1 Computers trying to communicate

We are (finally!) able to connect to our target host: we know a hostname, we
have a DNS server which we can use to lookup the IP address belonging to this
hostname and we also know the port we should connect to. Is there anything
which could stop us from communicating with other computers? Yes! Let me
give you a conversation between two computers.

<YourPC> Hi there!
<RemoteMac> Hey, I’m a Mac webserver, what can I do for you?
<YourPC> Umm, could you please do PC UAHDNFDAOEKFMSJEKXKW?
<RemoteMac> I’m sorry, but I don’t understand you, I’m a MacIntosh.
<YourPC> GPF, WINDOWS CRASH! (Expected to get PC UAHDNFDAOEKFMSJEKXKW,
not this.)

Of course, computers don’t communicate like this, but I think you get the
point. We need a good set of rules which both computers obey to make sure
that they’ll understand eachother and won’t be surprised about certain replies.

Since each Internet service is a little different and requires slighlty different
commands and communication, one set of rules wouldn’t be enough. Therefore,
we have a lot of standardized sets of communication rules: protocols.

A protocol defines how data is transfered, how certain data should be re-
quested and many more things like this. When your browser connects to a
webserver at port 80, a connection between your browser and the webserver
software is established. These two can now communicate and exchange data,
because they both use exactly the same protocol: HTTP (HyperText Transfer
Protocol).

Server software and client software can now communicate without problems:
they use the same protocol, they know what they should expect. This way, we
avoid conversations like the one I wrote down above.

There are many different protocols. HTTP is used for the World Wide Web,
FTP (File Transfer Protocol) is used to transfer files to or from a remote host,
Telnet is used for controlling remote computers you have access to and so on and
on. All these protocols are standardized to make sure that all software producers
use exactly the same version of the protocol. These standardized protocols are

4



defined in RFC’s, so if you want to learn more about specific protocols, you
should search for these RFC’s on the Web.

2.4.2 Server software, protocols and ports

When we were discussing the IP addresses, I already mentioned that we don’t
want to remember numbers. We want easy-to-remember names! And hostnames
are very suitable for that. But we also need a port number! It’d be very annoying
if we would have to remember both a hostname and a port number.

Therefore, protocols (and thus Internet services) are linked with the port
numbers. The standard port for HTTP is 80, the port for FTP is 21, the
port for Telnet is 23, the port for IRC is 6667, etc. This way, a program
like a browser knows that it should connect to port 80 if you want to visit a
website. On the other hand, if you want to access an FTP server (you enter
ftp://ftp.target.com, where ftp:// means that FTP is the protocol which should
be used), your browser automatically connects to port 21.

There are, of course, exceptions: it’s very easy to configure your server
software a little different to make it listen to a port different from the standard.

3 Sockets

We have all information we need to know to be able to connect to a server
program running at a remote computer, but how do we connect to it? As you
see, we are making progress with every section and subsection, however, new
questions rise just as fast. . .

Fortunately, we don’t have to write any device drives or anything like that:
we don’t deal with hardware stuff like sending commands to a modem. All
operating systems I know have a hardware abstraction layer which does that for
us. All we have to know is how this abstraction layer works.

When you want to establish a (virtual) connection to a remote computer,
you have to use sockets. Let me tell you a little more about sockets.

3.1 Berkeley sockets

During the beginning of the Internet, two API’s were developed for accessing
a TCP/IP-based network like the Internet: Berkeley sockets and the UNIX
System V Transport Layer Interface. Both of these were developed in C on
UNIX systems.

Berkeley sockets became the most-used API: TLI is still available under
UNIX operating systems, but other operating systems don’t support them.
Berkeley sockets are supported by almost any system, which makes it easier
to port applications. (However, Microsoft did the same with Berkeley sockets
as they did with Java, as we’ll see later in this essay.)

The Berkeley sockets API provides everything you need for (virtual) Internet
connections: you can connect to remote hosts, you can send and receive data,
you can lookup IP addresses and so on and on.

As you can imagine, this API works with ‘sockets’, but what exactly is a
‘socket’? It’s hard to describe, because it’s a very abstract thing. You could
say it’s a phone, but I won’t proceed with that comparison with that anymore,
you’ve probably had enough of that.

5



For each Internet connection with a remote computer, you need a separate
socket. A program can ask the API for a socket with certain capabilities: you
could create a socket listening to connections from other computers òr you could
create a socket you want to use to connect a remote computer. When a program
exits, the sockets it started are gone. You tell your sockets what they should do
and they’ll do it.

3.2 Windows sockets

Winsock (Windows Sockets) is an API based on the original Berkeley sockets,
though Microsoft changed it a little. Compare it with Java: Sun produces an
open source coding language with open source Virtual Machines. And what
does Microsoft? It makes its own version of Java which isn’t 100

Even before Java existed, Microsoft already adapted the Berkeley sockets
and changed them a little. The most important changes were a couple of new
functions which should be called to initiate Winsock and to clean things up.

The changes Microsoft made make it more difficult to write portable Internet
applications, although there are ways to reduce this to a minimum. In C, for
example, you could use preprocessor directives to choose between UNIX and
Windows source code:

#ifdef UNIX
#include <arpa/inet.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#else
#include <winsock.h>
#endif

If you don’t fully understand this: doesn’t matter, I only mention it for the
coders who would like to know. Much more about Windows sockets in the next
part of this series.

4 Last words

That was it for this essay. In the next part, I’ll explain more about the Winsock
API and DLL’s and I’ll also show you how to deal with WinTECH’s Socket-
Spy/32. That will be the last part of the introduction to this series. After that,
we’ll have the knowledge we need to start with and we’ll start with the real re-
versing work. The first target I’ll write about (in part 4) is HotDog Professional
5.5.

Last, but not least, personal greetz go out to everyone I know. . . Special
greetz go out to˜S˜, you did a great job!

Steinowitz
switz@newmail.net
http://dread99.cjb.net and http://www.s.url

6


