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Abstract

A significant and ever-increasing amount of
data is accessible only by filling out HTML
forms to query an underlying Web data
source. While this is most welcome from a
user perspective (queries are relatively easy
and precise) and from a data management
perspective (static pages need not be main-
tained and databases can be accessed di-
rectly), automated agents must face the chal-
lenge of obtaining the data behind forms. In
principle an agent can obtain all the data be-
hind a form by multiple submissions of the
form filled out in all possible ways, but effi-
ciency concerns lead us to consider alterna-
tives. We investigate these alternatives and
show that we can estimate the amount of re-
maining data (if any) after a small number of
submissions and that we can heuristically se-
lect a reasonably minimal number of submis-
sions to maximize the coverage of the data.
Experimental results show that these statisti-
cal predictions are appropriate and useful.

1 Introduction

To help consumers and providers manage the huge
quantities of information on the World Wide Web,
it is becoming increasingly common to use databases
to generate Web pages dynamically. Often, dynami-
cally generated pages are accessible only through an
HTML form that invokes a Common Gateway In-
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Figure 1: Typical Web Form for Finding Automobiles

teraction (CGI) request to a Web server (e.g. Fig-
ure 1). Servers often convert CGI requests to database
queries parameterized by information supplied by an
end user through a supporting HTML form. Informa-
tion available only through such CGI requests com-
prises a portion of what researchers sometimes call the
“deep Web” [1] or the “hidden Web” [9, 21].

Unlike ordinary Web pages mapped to standard
URLs, information in the hidden Web is not acces-
sible through regular HTTP GET requests by merely
specifying a URL and receiving a referenced page in
response. Perhaps the information requires client au-
thentication by means of a user ID and password. Or
maybe the information is hidden behind a firewall in an
intranet only accessible from particular IP addresses.
Other portions of the Web are “hidden” only in the
sense that none of the major search engines index those
pages [14]. Most commonly, however, data in the hid-
den Web is stored in a database and is accessible by
issuing queries guided by HTML forms.

A commercial vendor, BrightPlanet.com, claims
that the size of the deep Web is 500 times greater
than the “shallow Web” [1]. Regardless of the actual
relative size, it is clear that an enormous amount of
data exists outside the so-called “indexable Web” [15].
Users want and need better access to this information.

Automated extraction of data behind form inter-
faces is desirable when we wish to have automated
agents search for desired information, when we wish
to wrap a site for higher level queries, and when we
wish to extract and integrate information from differ-
ent sites. How can we automatically access this in-
formation? As our contribution in this paper we an-
swer this question by explaining how to (1) automate
the filling in of forms, (2) statistically streamline the
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Figure 2: Flowchart of Our Approach

process to make the information gathering process ef-
ficient, and (3) analyze returned results to handle er-
rors intelligently and to discard duplicate data. In the
broader context of our project [11], information gath-
ered during form processing will later be handed to
a downstream data extraction process (see Figure 2),
but an explanation of this activity has already been
reported [8] is beyond the scope of this paper.

1.1 Issues in Automatic Form Filling

There are many ways to design Web forms, and dealing
with all the possibilities is not easy. We can build Web
forms from a variety of controls such as radio buttons,
checkboxes, selection lists, text boxes, hidden controls,
and even author-defined objects. However, we can sim-
plify this list because information transmitted to the
server in a CGI request is fundamentally just a list
of (name, value) pairs, appropriately encoded. Thus,
we can characterize a form with n controls as a tu-
ple F = 〈U, (N1, V1), (N2, V2), ..., (Nn, Vn)〉, where U
is the URL to which the encoded CGI request is sent,
and the (Ni, Vi) are (name, value) pairs to be sent.

Unfortunately, this is an oversimplification. There
is considerable information associated with other
metadata in the HTML form specification. For ex-
ample, controls can be labeled as well as named; both
labels and names might suggest possible domains we
could associate with the fields. Text boxes often have
a maximum content length (thus limiting the domain).
A server might only respond to one of the two possible
access methods (GET or POST). Finite domains for

certain controls might be nicely specified (e.g. hidden
controls have static scalar values, and radio buttons,
checkboxes, and selection groups each enumerate a rel-
atively small set of possible values). There is a great
deal we can learn from these HTML constraints.

Moreover, automated forms processing encounters
a host of difficulties, including the following problems.

• Result pages might contain error messages. Some
error messages are easy to recognize automati-
cally, such as HTTP 404 error pages. Other error
messages are more difficult to recognize automat-
ically because messages may be embedded within
a series of tables, frames, or other types of HTML
divisions. Users can usually understand these em-
bedded messages quite easily, but automated un-
derstanding is difficult.

• Sometimes we can retrieve all the data behind a
form with a single submission. At other times,
we must obtain the data piecemeal using multiple
queries with different form control settings.

• When we obtain data piecemeal, we may retrieve
duplicate information, which we should discard.

• Some forms lead to other, more specialized forms
that require further interaction.

• A server may require a particular order of opera-
tion due to session tracking. A site, for example,
might require a login or might use cookies to track
a user’s progress through a series of interactions.

• Client-side scripts may interact with forms in ar-
bitrary ways to modify and constrain form behav-
ior. A script, for example, might derive the value
for a text box containing the total sales price in
an order form. JavaScript may alter the behav-
ior of forms. Unfortunately it is computationally
hard to automatically analyze and understand ar-
bitrary scripts.

All these issues present difficulties for automation.
How can a system automatically fill in the fields of
a form and submit it? How can a system deal with
retrieved data, duplicate information, possible error
messages or error notification pages, and embedded
Web forms inside retrieved documents? Before de-
scribing our solution (which does not address and solve
all the problems, but only the central problems of ef-
ficient form filling and submission, and duplicate re-
sult detection and elimination), we first discuss related
work.

1.2 Related Work

Others have also studied the problem of automatically
filling out Web forms. Most common are tools de-
signed to make it easier for an end user to fill out
a form. Commercial services exist, for example, to



provide information from a limited portfolio of user-
specified information such as name, address, contact
information, and credit card information [6, 7, 18].
These services, such as the Microsoft Passport and
Wallet system, encrypt a user’s personal information
and then automatically fill in Web forms when fields
can be recognized. Since many forms share common
attributes (especially in the domain of e-commerce
transactions), these tools can reliably assist users in
entering personal information into Web forms.

One of the earliest efforts at automated form fill-
ing was the ShopBot project [5], which uses domain-
specific heuristics to fill out forms for the purpose of
comparison shopping. The ShopBot project, however,
did not propose a general-purpose mechanism for fill-
ing in forms for non-shopping domains.

More recently, researchers have considered the prob-
lem of assisting users in complex information search
tasks that may span many Web sites and multiple
Web forms. Davulcu et al. report on an architec-
ture for designing “webbases” that help users perform
complex domain-specific searches using a guided, by-
example tool [4]. Experts write underlying specifica-
tions declaratively because webbases are too difficult
for end users to create themselves. The authors men-
tion some heuristics, but give few details regarding
the actual process of filling out forms. This project
appears to be a good attempt to simplify the creation
of domain-specific search services, but it does not try
to be a general-purpose crawler for the hidden Web.

There are now commercial ventures providing ac-
cess to portions of the hidden Web. For example,
BrightPlanet.com’s Complete Planet as of December
21, 2000 claims to have indexed 38,500 databases con-
taining deep Web content [2]. Another service, Invisi-
bleWeb.com, claims to be “a directory of over 10,000
databases, archives, and search engines” [13] contain-
ing information from the hidden Web. Both of these
commercial services use semi-automated techniques for
indexing the hidden Web, but they do not publicly dis-
cuss the details of their processes.

The most closely related work to our own is the Hid-
den Web Exposer (HiWE) project at Stanford [20, 21].
Raghavan and Garcia-Molina propose a way to extend
crawlers beyond the publicly indexable Web by giving
them the capability to fill out Web forms automati-
cally. Because of the formidable challenges to a fully
automatic process, HiWE assumes that crawls will be
domain specific and human assisted (we also rely on
human assistance at key points, but we do not use do-
main specific information in retrieving data from a par-
ticular site). Although HiWE must start with a user-
provided description of the search task, HiWE learns
from successfully extracted information and updates
the task description database as it crawls. Besides an
operational model of a hidden Web crawler, a signif-
icant contribution of this work is the label matching

approach used to identify elements in a form based on
layout position, rather than proximity within the un-
derlying HTML code. These researchers also present
the details of several ranking heuristics together with
metrics and experimental results that help evaluate the
quality of the proposed process. The independently-
developed details of our approach are complementary
to HiWE. For example, we consider the task of dupli-
cate record elimination and we use a statistics-based
sampling approach to efficiently decide when a partic-
ular source has been sufficiently extracted.

As a final related-work note, we observe that many
researchers have considered the problem of planning
the information gathering process in a data integra-
tion context. HTML forms can be thought of as query
templates with “binding patterns” [22] that limit the
“access paths” to the data of interest [10]. Our purpose
is slightly different, in that we are not given source de-
scriptions ahead of time — rather, in an effort to truly
crawl the hidden Web, we attempt to extract all of the
available data at a particular source, not just answer
a specific query from the source.

1.3 Overview

In the remainder of the paper we describe the details
of our contribution. We have created a prototype tool
that automatically retrieves the data behind a partic-
ular HTML form. In Section 2, we discuss how we
fill out and submit a form to a server. In Section 3
we explain how we classify and process a result page
returned by a form submission. This includes, for ex-
ample, error detection and following next-page links to
gather all returned data. What we do with resulting
data records and how we proceed with our execution
plan critically depends on our ability to recognize du-
plicate data. We therefore next discuss in Section 4
how we recognize duplicate information and eliminate
duplicate data records. Section 5 discusses our form-
submission plan. In particular, we discuss the use of
statistical procedures as a means to intelligently cover
the search space and to determine how much of the
available data has likely been retrieved and how close
we are to completion. Section 6 presents the results of
experiments we conducted to verify our approach to
automatically extracting data behind Web forms. We
summarize, report on our implementation status, and
give plans for future work in Section 7

For the remainder of our discussion here, we make
several simplifying assumptions. (1) We assume that
user authentication is not required (or will be per-
formed by a user who guides the search process). (2)
We assume that we have arrived at a form, which
when filled out, yields information of interest (rather
than some other form for further interaction). (3) We
assume that we can process forms of interest repeat-
edly, without regard to a user’s session state as main-
tained on the server. (4) We assume that client-side



<form name="searchform" action="..." method="GET">

<input type="hidden" name="c" value="remotecontrols">
<input type="hidden" name="v" value="1">
<input type="hidden" name="_ttag" value="isrch.rslt">
<input type="hidden" name="pg" value="1">
<input type="hidden" name="pgid" value="shop">

<select name="InputType" style="width: 150px;">
<option value="" selected>Any
<option value="button">Hard Button
<option value="screen">Touchscreen </select>

<select name="InputManufacturer" style="width: 150px;">
<option value="" selected>Any
<option value="denon">Denon
<option value="general electric">General Electric
<option value="harman kardon">Harman Kardon
<option value="infocus">InFocus
<option value="invoca">Invoca
<option value="jensen">Jensen
<option value="jvc">JVC
<option value="one for all">One For All
<option value="onkia">Onkia
<option value="phillips">Phillips Magnavox
<option value="rca">RCA
<option value="sony">Sony
<option value="universal">Universal
<option value="zenith">Zenith </select>

<input type="text" name="InputModel" size="16" value="">
<input type="text" name="InputKeyword" size="16" value="">
<input type="text" name="InputPriceMin" size="7" value="">
<input type="text" name="InputPriceMax" size="7" value="">

</form>

Figure 3: Excerpt of the Source Code of a Web Form
(www.mysimon.com, reformatted for clarity)

JavaScript embedded in HTML pages will not interfere
with form submission. (5) We assume that forms of in-
terest will respond to submission via the HTTP GET
method. Our initial experience suggests anecdotally
that these assumptions are reasonable in the sense that
most forms with backend informational databases tend
to satisfy these assumptions.

2 Automated Form Filling

The first step to automated form filling is to parse
the HTML page and extract useful information from
the form description. We begin by creating a parse
tree for the given source page. We then look for the
presence of an HTML form by searching for start and
end tags, <form> and </form> respectively [12]. If a
form is present, we extract its portion of the parse tree
and, for the purposes of experimentation and repeti-
tive automated processing, we store the parse tree in
an easy-to-read form. Information of particular inter-
est includes the source URL of the page, the action
URL to which the form will be submitted, the num-
ber of fields, and details for each field, including field
names, types (domain information such as the avail-
able options for a selection list), and default values.
Figure 3 shows a cleaned up version of the HTML
source for a Web form that retrieves information about
television remote controls available for sale. Note that
the empty string is the default value for the text fields
in this form — in the forms we have surveyed, this is
typical.

Given the parse tree for a form, we are ready to be-

gin filling in field values. We start by assigning default
values to each field. Once assignments are made, the
form information needs to be encoded properly for the
request method. There are two ways to submit a form
for CGI processing. First, using the HTTP POST
verb, forms can be submitted with (name, value) pairs
encoded in the body of the request. Second, using the
HTTP GET verb, forms can be submitted by supply-
ing (name, value) pairs in the URL. A question mark
(?) separates the base URL and action path from the
encoded names and values. In the name-value list,
an equality operator (=) separates a name from its
assigned value, and an ampersand (&) separates one
(name, value) pair from the next.

For the example form in Figure 3, the base URL is
http://www.mysimon.com, and the action path is /is-
rch/index.jhtml. The form fields are c, v, pg, pgid, ttag,
InputType, InputManufacturer, InputModel, InputKey-
word, InputPriceMin, and InputPriceMax. Observe that
hidden fields are like constants — they cannot be mod-
ified by users. Using the default values for non-hidden
fields from Figure 3, the value for InputType is blank
(indicating in this case “Any” type of remote control).
So the (name, value) assignment for InputType is: In-
putType=. Similarly, the rest of the form field settings
are assigned their default values, and the query is thus
constructed as:

http://www.mysimon.com/isrch/index.jhtml?
c=remotecontrols&v=1& ttag=isrch.rslt&pg=1&
pgid=shop&InputType=&InputManufacturer=&
InputModel=&InputKeyword=&
InputPriceMin=&InputPriceMax=

We send this query directly to the Web site referenced
by the base URL. This submission has the same effect
as that of a user clicking the search button without
selecting or typing anything on the Web form. Figure 4
shows a portion of the returned page for this query.

We can construct other queries by selecting various
combinations of selection-list values, radio-button set-
tings, and check-box selections. Usually it is not nec-
essary to fill in text boxes automatically. Our system
allows a user to provide values for text boxes, but does
not require that values be provided. For forms with
text boxes, our system only submits queries that have
no entries for text boxes or that have user-supplied
text-box values. The text boxes in the query that re-
turned the results in Figure 4, for example, were all
empty.

3 Processing a Response Page

Once a query is sent, the next step is to retrieve infor-
mation from the target site. Several different results
are possible. We discuss each in turn.

Data Returned Piecemeal. The most common
response is that a Web site will return results a bit



Figure 4: Portion of a Retrieved Data Page
(www.mysimon.com)

at a time, showing perhaps 10 or 20 results per page.
Usually there is a link or a button to get to the next
page until the last page is reached. For this case we
treat all the consecutive next pages from the returned
page as part of one single document by concatenating
all the pages into one page. The system activates this
process if the returned page contains a button or link
indicating “next” or “more.” In this way, the system
constructs a logical page containing all the data for
the query.

Default Query Retrieves All Data. For small
databases, the initial default query often returns all
the data in the database (usually piecemeal as de-
scribed above). The system determines statistically
that all the data might have been retrieved by sam-
pling the database with a few additional queries. If
these additional queries all return data that is equal
to or subsumed by the data returned for the initial
default query, we need not query with all combina-
tions. Section 4 explains how we detect whether data
is “equal” or “subsumed,” and Section 5 gives the de-
tails about how many and which queries the system
needs to execute to reach a user-specified confidence
level (typically 95%) that the default query retrieves
all data.

Default Query Does Not Retrieve All Data.
Every set of returned data may be some particular
subset of the overall database. When we sample the
database and find data not already returned by the
initial default query, we continue submitting queries
until we have retrieved as much of the data as the
user wishes (80%, 90%, 95%, 99%, ..., or all of it).
Section 5 explains how we intelligently submit queries
to cover the space and how we statistically determine
how much of the data the system has retrieved.

Error: No-Record Notification or Required
Field Missing. This situation occurs (a) when a
query returns no data or (b) when text fields require
an entry. The system could search for a message such
as “No matching records found” for Case (a) and could

search for a message such as ”Required field missing”
for Case (b). It is more reliable for both cases, how-
ever, to observe that the size of the information re-
turned after removing duplicate miscelleneous header
and footer information is normally very small — usu-
ally a constant small value for all queries that return
no data. For Case (a) we simply continue, but for
Case (b), we require user intervention. The user either
aborts the operation or supplies values for required
text fields, and the system continues with these given
values.

Error: Unexpected Failure. A server might be
down, a network connection may fail, or there may be
HTTP errors. Our system maintains a timeout rou-
tine to terminate the operation if any abnormal delay
occurs. In this case the system reports the possible
error(s) and aborts the current operation.

4 Recognizing Duplicate Data

When we query a Web site, we gather retrieved data
into a repository. As we retrieve data for multiple
submissions of a form, we eliminate duplicate chunks
of data (duplicate records) before placing them in the
repository. To do this, we use the copy detection sys-
tem [3], which is highly effective for finding duplicate
sentences over a large set of textual documents. The
system divides a document into sentences, computes
hash values for each sentence, and locates duplicate
sentences in each hash bucket. Instead of sentence
boundaries, we wish to detect record boundaries, but
otherwise the processing is the same.

We usually find records in data retrieved from be-
hind Web forms displayed as paragraphs separated by
the HTML paragraph tag <p>, as rows in a table
separated by <tr> </tr> tags, or as blocks of data
separated by the <hr> horizontal rule tag. In or-
der to adapt the copy detection system for a collec-
tion of records, we devised a special tag called the
sentence boundary separator tag denoted by <s.>.
We then modified the copy detection system to ac-
knowledge this special tag as the end of a sentence
(i.e. the end of a record). During the duplicate detec-
tion process, the system inserts this tag into retrieved
Web documents around certain HTML tags that most
likely delimit records. The tags we have chosen for
this treatment include </tr>, <hr>, <p>, </table>,
</blockquote> and </html>. If none of the above
tags except </html> appears in the document, the
whole document is considered to be a single record.

With this modification, the copy detection system
computes hash values for every record separated by
<s.>. It then compares these new hash values with
the hash values of all records retrieved previously and
stored in the repository. When duplicate records are
found, the system eliminates them, keeping only new,
unique records and their hash values in the repository.



5 Form Submission Plan

Our goal is to retrieve all the data within the scope of
a particular Web form. One way to do this is to fill
in the form in all possible ways. Ignoring the issue of
fields with unbounded domains (i.e., text boxes), there
are still two problems with this strategy. First, the
process may be time consuming. Second, we may have
retrieved all (or at least a significant percentage) of the
data before submitting all the queries. Many forms
have a default query that obtains all data available
from the site. If the default query does not yield all
data, it is still likely that we can extract a sufficient
percentage of the data without exhaustively trying all
possible queries.

Our strategy involves several phases: (1) issue the
default query, (2) sample the site to determine whether
the default query response is likely to be comprehen-
sive, and (3) exhaustively query until we reach a lim-
iting threshold. In the exhaustive phase, we can often
save considerable effort by using limiting thresholds.
For example, we can estimate the size of the database
behind a form, and then continue issuing queries until
we have reached a certain percentage of completeness.
The user can specify several thresholds:

• Percentage of data retrieved : What percentage of
the estimated data has actually been retrieved so
far? Typical values for this threshold might be
80%, 90%, 95%, or 99%. This threshold controls
the quality of the crawl.

• Number of queries issued : How many total queries
have been issued to this site? It may be pru-
dent to limit the burden placed on individual sites
by terminating a crawl after a particular num-
ber of queries. This threshold controls the burden
placed on crawled sites.

• Number of bytes retrieved : How many bytes of
unique data have been retrieved so far?

• Amount of time spent : How much total time has
been spent crawling this site? This threshold and
the previous one control the resources required on
the crawler side to support the crawl.

• Number of consecutive empty queries: How many
consecutive queries have returned no new data?
The probability of encountering new data goes
down significantly as the number of consecutive
empty queries goes up.

Each of these thresholds constitutes a sequential stop-
ping rule that can terminate the crawl before trying all
possible queries (by “all” we mean all combinations of
choices for fields with bounded domains — we exclude
fields with unbounded domains in this study).

Table 1: Two-Way Layout with Random Sampling
Factor A

a1 a2 a3 a4 a5 a6 a7
b1 x x x

Factor B b2 x x
b3
b4 x x

5.1 Sampling Phase

Earlier we described the method for determining and
issuing the default query. We now discuss the sam-
pling procedure used to determine whether the default
query is likely to have returned all the data behind a
particular form.

There are several parameters of interest to us. First,
we characterize each form field as a “factor” in our
search space. Let f1, f2, ...fn be the n factors cor-
responding to fields with bounded domains, and let
|fi| represent the number of choices for the ith factor.
Then the total number of possible combinations N for
this form is:

N =
n∏

i=1

|fi|.

We are also interested in the cardinality c of the largest
factor: c = max(|f1|, |f2|, ..., |fn|).

Next, we define C to be the size of a sampling batch.
We want each sampling batch to be large enough to
cover the margins of our sample space — that is, we
want to have fair coverage over all the factors. So we
let C = max(c, �log2 N�). This accounts for the case
where there are many factors of small cardinality. For
example, if there were 16 factors each of cardinality
2, then N = 216 = 65536, but c = 2. We want c
to be representative of the size of our search space,
so we require that it be at least log2 N , which is a
statistically reasonable number to use when sampling
populations of known size (consider, for example, the
2k factorial experiments method [23, 17]).

Our decision rule for determining whether the de-
fault query returned all the data available from a par-
ticular site is based on a sample of C queries. If all
C queries return no additional data (i.e. after du-
plicates have been eliminated), then we assume the
default query did indeed retrieve all available data.

However, we need to be careful about how we choose
the C queries. Suppose the form of interest contains
two bounded fields with choices of 7 and 4 possibil-
ities respectively. Then we have N = 7 × 4 and
C = max(max(4, 7), �log2 28�) = max(7, 5) = 7. If
we simply choose C random queries, we might end
up with a sample set like the one shown in Table 1.
This table shows a two-way layout [23, 16, 17, 19] that
helps us use a two-factor method [23, 17, 19] to choose
a query sample. Notice that a6, a7, and b3 were not
considered in any of the sample queries, while b1 is
oversampled.

One solution is to keep track of how many times
we have sampled each factor, and spread the samples



Table 2: Regular Sampling with Maximal Coverage
Factor A

a1 a2 a3 a4 a5 a6 a7
b1 x x

Factor B b2 x x
b3 x x
b4 x

Table 3: Random Sampling with Maximal Coverage
Factor A

a1 a2 a3 a4 a5 a6 a7
b1 x x

Factor B b2 x x
b3 x
b4 x x

evenly, as Table 2 shows. This approach for construct-
ing a sampling search pattern yields “maximal cover-
age.”

In Table 2 we use a regular pattern to cover both
factors as broadly as possible. The sample consists of
the sequence (a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b1),
(a6, b2), (a7, b3). If we were to continue, the next query
we would choose would be (a1, b4). The algorithm
chooses a next sample that is as far away from all
previous samples as possible. Since we have categor-
ical, not quantitative, data each of the ai choices for
factor A is equally distant from all others. Thus, our
distance function simply measures the number of co-
ordinates that are different. For example, the distance
between (a1, b1) and (a2, b2) is 2, while the distance
between (a1, b1) and (a7, b1) is 1.

To ensure that a regular pattern does not bias our
results, we introduced a stochastic element by ran-
domly choosing next samples from the list of all those
that are equally furthest from the set selected so far.
This yields a layout like the one in Table 3. Note that
our technique is general for n dimensions, n ≥ 2.

After issuing C queries stochastically in a maxi-
mally covering fashion, if we have received no new data
we judge the default query to be sufficient and halt,
claiming that we have successfully retrieved all data.
In practice, this rule has been highly successful (as
judged by human operators manually verifying the de-
cision). Although this rule never reported that all data
had been retrieved when it had not, we did encounter
sites where our rule was too strict. (The copy detec-
tion system reported new bytes in subsequent queries,
but there were not really any new records; this can be
the result of personalized advertizing information or
other dynamic variations in Web pages).

Our decision rule for determining whether a query
yields “new” data is based on a size heuristic. First
we strip a returned page of its HTML tags, leaving on
the special sentence boundary tags (<s.>) described
in Section 4. Then we use the copy detection system
to remove duplicate sentences, and count the number
of bytes U remaining. If U is at least 1000, we assume
we have received new data. If U is less than 1000,
we use order analysis to prune small results. We first
find the minimum size M returned by the previous C

queries. If U is greater than M then we assume we
have received new data. We have also tested a per-
centage threshold, comparing U to the total number
of bytes returned in the page (excluding HTML tags).
Both heuristics perform reasonably well. Since we are
using a statistical approach, some noise in the system
is acceptable, and indeed some even cancels itself out.

Another way to test for uniqueness of data would
be to call on our downstream record extraction process
to actually extract and structure the records from this
page. Then we could perform database-level record
comparisons to determine when we have found unique
records. However, this makes the Web-form retrieval
less general by tying it to a specific domain ontology.
In the future we will investigate more fully the ramifi-
cations of this alternate approach.

5.2 Exhaustive Phase

If the C sample queries yield new data, we proceed
by sampling additional batches of C queries at a time,
until we reach one of the user-specified thresholds or
we exhaust all the possible combinations. Sampling
proceeds according to the maximal covering algorithm
discussed earlier — each new query is guaranteed to
be as far away from previous queries as possible, thus
maximizing our coverage of the factors.

However, before proceeding, we first estimate and
report the maximum possible space needed for storing
the results and the maximum remaining time needed
to finish the process. We also give the user the choice
of specifying the various thresholds for completeness
of retrieved data, maximum number of queries to be
issued, maximum storage space to use, and maximum
time to take. Additionally, the user can decide to stop
and use only the information already obtained. (All
this information can also be specified ahead of time so
the process can run unattended.)

We estimate the maximum space requirement S by
multiplying the total number of queries N by the av-
erage of the space needed for data retrieved from n
sample queries:

S =
(

N

n

) n∑
i=1

bi

where bi is the size in bytes of the ith sample query,
and typically n = C.

We estimate the remaining time required T simi-
larly:

T =
(

N

n

) n∑
i=1

ti −
n∑

i=1

ti =
(

N − n

n

) n∑
i=1

ti

where ti is the total duration of the ith sample query.
Note that we subtract the time already spent in the
initial sampling phase. Also observe that since we fol-
low “next” links, what we are calling a “query” could
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Figure 5: Completeness Measures for Automobile Ads
Web Site (www.slc-classifieds.com, Form 1)

actually involve a fair number of HTTP GET requests.
For larger sites, this can take a significant amount of
time.

After establishing the user’s preferences, we proceed
to process additional batches of C query samples. At
the end of each sample batch, we test the thresholds
to see if it would be productive to continue processing.
Note that each batch provides maximal coverage of the
various factors, using unique combinations that have
not yet been tried.

Figure 5 illustrates how we measure our progress
with respect to the percentage of information retrieved
so far. The “Observed” line indicates how many ac-
tual unique bytes we have seen after each query cycle.
The “Estimate” line shows our estimate of the num-
ber of unique bytes we would encounter if we were to
exhaustively crawl this Web site (trying all possible
combinations of queries). The “95% Limit” line uses
the standard deviation of our prediction estimate for
the probability of finding additional data to determine
the level at which we can claim 95% confidence about
our estimate. That is, based on what we have seen
so far, we are 95% confident that the real number is
less than the “95% Limit” number. In this example,
we cross the 80% completeness threshold in cycle 14
(out of 36 total). After 22 cycles we estimate that
we are 90% complete. We reach 95% in cycle 25, and
99% in cycle 31. Only after all 36 cycles have been
exhaustively attempted would we determine that we
are 100% complete. In this example, N = 2124 and
C = 59. Thus, if 80% completeness is sufficient for the
user, we prune 1297 out of 2124 queries (61%) from
the list.

The formula for estimating the database size Di af-
ter i queries is shown in Equation 1:

Di = Oi

(
1 +

N − i

i
pi

)
(1)

where Oi is the number of unique bytes observed af-
ter i queries, and pi is the estimate of the probability
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Figure 6: Windowed vs. Cumulative Estimates

of finding new data in query i + 1. The only random
variable in Equation 1 is pi, which is defined as the
number of queries that returned new data divided by
i. Thus, pi is a cumulative probability estimate re-
flecting the ratio of successful queries to total queries.
We compute Di by predicting that in the remaining
N − i queries the proportion that return new data will
be approximately pi. Further, we estimate that on av-
erage successful queries will return approximately Oi

i

new bytes. We can compute D̂i, that is, Di with 95%
confidence by including in pi a measure of the standard
deviation of pi over the previous two query cycles, σi,
as shown in Equation 2:

D̂i = Oi

(
1 +

N − i

i
(pi + 1.645σi)

)
(2)

Rather than using a cumulative estimate of
database size, we could instead use a window to ig-
nore older data points. For example, Figure 6 com-
pares a cumulative estimate of Di with a windowed
estimate, where the probability pi is only computed
using the last two query cycles. One might think that
a windowed probability estimate should be more accu-
rate because it reflects more recent experience. But in
practice the more stable cumulative estimate appears
to give better performance among the sites we have
examined. Both converge relatively quickly and show
nicely declining variance over time.

6 Experimental Results

A considerable amount of our work was done by sim-
ulation, crawling a site once and then playing with
different sampling scenarios to understand the ramifi-
cations of various approaches. However, we also tried
our tool on 13 different Web sites from several differ-
ent application domains to evaluate its performance
empirically. In all cases, we manually verified the de-
cision reported by the system regarding whether the
default query retrieved all data. In five of the cases,
the default query did indeed return all the data.
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In our testing, processing a single HTTP request
took anywhere from 2 to 25 seconds on average, de-
pending on the Web site. A single query, which in-
cludes following “next” links, averaged between 5 sec-
onds and 14 minutes. Some pages had no “next” links,
but others had as many as 140 such links! Thus, the
sampling phase could take anywhere from a few dozen
seconds to several hours. Storage requirements were
modest by modern standards, requiring anywhere from
several megabytes to hundreds of megabytes per tested
site.

We encountered two typical data patterns. First
is the relatively sparse behavior exhibited by the site
crawled in Figure 5. The second is fairly dense, as
typified by Figure 7. Both of these data sets come
from the same Web site, but through different forms
to different sub-portions of the site. In this second
example, there are only 8 query cycles of 23 queries
each (8 choices for one bounded field, 23 for another),
for a total of N = 184. However, it is not until the
end of cycle 6 (query 138) that we estimate we have
retrieved 80% of the available data. And even then,
there is still an estimated 42% probability of obtaining
additional data with another query. Thus, we can only
save a small portion of the 184 queries (25% or fewer).
Even in such cases, however, the 15-25% savings can
be significant.

7 Conclusion

In this paper we have described our domain-
independent approach for automatically retrieving the
data behind a given Web form. We have prototyped
a synergistic tool that brings the user into the process
when an automatic decision is hard to make. We use a
two-phase approach to gathering data: first we sample
the responses from the Web site of interest, and then,
if necessary, we methodically try all possible queries
(until either we believe we have arrived at a fixpoint of
retrieved data, or we have reached some other stopping
threshold, or we have exhausted all possible queries).

We have created a prototype (mostly in Java, but
also using JavaScript, PHP, and Perl) to test our ideas,
and the initial results are encouraging. We have been
successful with a number of Web sites, and we are
continuing to study ways to improve our tool.
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Figure 8: Relative Productivity of Various Factors

One improvement that seems particularly promis-
ing is to perform an analysis of the productivity of
various factors in order to emphasize those that yield
more data earlier in the search process. For exam-
ple, Figure 8 shows that choices 1, 4, and 28 of Factor
A have been significantly more productive than aver-
age in the first two query cycles. Similarly, choices 4
and 6 of Factor B, and choices 1 and 3 of Factor C



are highly productive. A straightforward two-way in-
teraction analysis indicates which pairs of choices for
various factors are most productive. There are chal-
lenging issues with determining how best to partition
the search space, but we are studying how a directed
search algorithm might perform.

Our research group is generally working in the
broader context of ontology-based data extraction and
information integration. If we combine the hidden
Web retrieval problem with the tool of domain-specific
ontologies, we could automatically fill in text boxes
with values from the ontologies. While this makes the
retrieval process task-specific, it also increases the like-
lihood of being able to extract just the relevant subset
of data at a particular Web site. (Our assumption in
this paper has been that the user wants to retrieve all
or most of the data at a given site.) Also, it is likely
that we could avoid a fair amount of the manual inter-
vention in our current process if we use ontologies.

Users need and want better access to the hidden
Web. We believe this will be an increasingly important
and fertile area to explore. This paper represents a
step in that direction, but a great deal remains to be
done. We look forward to continuing this promising
line of research.
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