
Light-weight Domain-based Form Assistant:
Querying Web Databases On the Fly∗

Zhen Zhang Bin He Kevin Chen-Chuan Chang

University of Illinois at Urbana-Champaign
{zhang2, binhe}@uiuc.edu, kcchang@cs.uiuc.edu

Abstract

The Web has been rapidly “deepened” by myr-
iad searchable databases online, where data are
hidden behind query forms. Helping users query
alternative “deep Web” sources in the same do-
main (e.g., Books, Airfares) is an important task
with broad applications. As a core component
of those applications, dynamic query translation
(i.e., translating a user’s query across dynami-
cally selected sources) has not been extensively
explored. While existing works focus on iso-
lated subproblems (e.g., schema matching, query
rewriting) to study, we target at building a com-
plete query translator and thus face new chal-
lenges: 1) To complete the translator, we need to
solve the predicate mapping problem (i.e., map
a source predicate to target predicates), which
is largely unexplored by existing works; 2) To
satisfy our application requirements, we need to
design a customizable system architecture to as-
semble various components addressing respective
subproblems (i.e., schema matching, predicate
mapping, query rewriting). Tackling these chal-
lenges, we develop a light-weight domain-based
form assistant, which can generally handle alter-
native sources in the same domain and is easily
customizable to new domains. Our experiment
shows the effectiveness of our form assistant in
translating queries for real Web sources.

∗This material is based upon work partially supported by NSF Grants
IIS-0133199, IIS-0313260, and an 2004 IBM Faculty Award. Any opin-
ions, findings, and conclusions or recommendations expressed in this pub-
lication are those of the author(s) and do not necessarily reflect the views
of the funding agencies.
Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

1 Introduction

Recently, we have witnessed the rapid growth of databases
on the Web, or the so-called “deep Web.” A July 2000 sur-
vey [1] estimated 96,000 “search cites” and 550 billion
content pages in this deep Web. Our recent study [4] in
April 2004 estimated 450,000 online databases. On the
deep Web, numerous online databases provide dynamic
query-based data access through their query forms, instead
of static URL links. For instance, amazon.com supports
a query form for searching books on author, title, sub-
ject, etc.. To help users explore the deep Web, it becomes
increasingly important to facilitate users’ interaction with
query forms. Therefore, this paper proposes to build a form
assistant to help querying databases on the Web.

In particular, with the proliferation of sources in vari-
ous domains, we often need to query “alternative” sources
in the same domain (e.g., Books, Airfares). We observe
that such a domain-based integration scenario is useful with
broad applications. For instance, we may build a Meta-
Querier [6] to integrate dynamically selected sources rele-
vant to user’s queries, where on-the-fly translation of user’s
queries to these sources is necessary; we may build a do-
main portal (e.g., pricegrabber.com) to provide a unified
access to dynamic online sources in the same domain with
general translation techniques; or we may build a form as-
sistant toolkit to suggest users with potential queries they
are likely to issue in query forms, e.g., if a user fills the
query form in amazon.com, the toolkit can suggest poten-
tial queries in bn.com. (Section 6 will discuss the imple-
mentation of such a form assistant toolkit.)

A core component of these applications is a dynamic
query translator, which translates user’s queries between
dynamically selected query forms in the same domain. In
particular, we define the query translation problem as trans-
lating a user’s query from a source query form to a target
one, which we believe is a foundation of many translation
tasks in various applications. (Section 2 will present our
formal definition of the query translation problem.) Exist-
ing works mainly focus on isolated subproblems of transla-
tion (e.g., schema matching, query rewriting) to study. The
goal of our work, i.e., building a complete dynamic query
translator, has thus not been extensively investigated.

97

Tom ClancyTom Clancy

Source query Qs on source form S

Filter :

f1 f2

U

Target query form T

Query Translation

title contain “red storm” and price < 35 and age > 12

s1

s2

s4

s3

Union Query Qt*:

Figure 1: Form assistant: A translation example.

As the applications mandate, such a query translator
should have two properties: First, source-generality: We
require the built-in translation techniques can generally
cope with new or “unseen” sources. Second, domain-
portability: We require the translator can be easily cus-
tomized with domain-specific knowledge and thus de-
ployed for new domains. As a realization of such a query
translator, we develop a light-weight domain-based form
assistant. It is domain-based because it can generally han-
dle alternative sources in the same domain with a manage-
able size of domain-specific knowledge. It is light-weight
because customizing to a new domain only needs limited
efforts to encode domain-specific knowledge. To better un-
derstand new challenges we are facing in building this form
assistant, let us look at a translation example.

Example 1: Assume we want to build a form assistant for
Books domain, which can translate queries between any
two book sources. In particular, consider a translation from
a source query Qs (issued on a source form S) to a target
form T in Figure 1. Qs is a conjunctive query over four
predicates s1 : [author; contain; Tom Clancy], s2 : [title; con-
tain; red storm], s3 : [age; >; 12], and s4 : [price; ≤; 35],
i.e., Qs = s1 ∧ s2 ∧ s3 ∧ s4. The target form T supports
predicate templates on author, title, subject, ISBN one at a
time with an optional predicate template on price. Figure 1
shows one of the possible translations.

To translate Qs from S to T in the above example, we
need to reconcile three levels of query heterogeneities:

Attribute level: Two sources may not support querying the
same concept or may query the same concept using differ-
ent attribute names. For instance, S supports querying the
concept of reader’s age, while T does not. Also, S denotes
book price using price range, while T using price.

Predicate level: Two sources may use different predicates
for the same concept. For instance, price predicate in T
has a different set of value ranges from S. As a result,
in the predicate level, we can only translate a predicate as
“close” as possible. In particular, we set our closeness goal
as minimal subsumption, i.e., to subsume the source query
Qs with fewest extra answers.

Query level: Two sources may have different capabilities
on querying valid combinations of predicates. In our exam-
ple, form T only supports queries on one of the attributes
author, title, subject and ISBN at a time with an optional
attribute price. Therefore, T cannot query author and title
together, while S can.

To realize the source query, we need to reconcile the het-
erogeneities at the three levels and generate a query plan
expressed upon the target form T . Such a plan, as Figure 1
shows, in general, consists of two parts: a union query Q∗

t

which is a union of queries upon the target form to retrieve
relevant answers from the target database, and a filter σ
which is a selection to filter out false positives. (Further op-
timization is possible by logic transformation of the query
plan, but this transformation does not change the semantics
of the plan.) To minimize the cost of post processing, i.e.,
filtering, we want the union query Q∗

t to be as “close” to the
source query Qs as possible so that it retrieves fewest extra
answers. Q∗

t in Figure 1 is such a query. We will discuss
its construction throughout the paper.

Building such a form assistant brings us two new chal-
lenges: predicate mapping and system architecture design.
First, we need to develop a general predicate mapping
mechanism that can be easily adopted to new sources and
domains. While extensive studies have been done to the
attribute level, known as schema matching, and the query
level, known as capability-based query rewriting, little has
been done to reconciling the heterogeneity at predicate
level, which we name as predicate mapping. Existing work
on predicate mapping [2] relies on per-source based rules
to encode the mapping knowledge, which cannot achieve
our goal of source-generality and domain-portability. Our
approach is inspired by an intriguing insight that match-
ing predicates often form localities, which are consistent
with the notion of data types. This observation enables
us to encode a more general mapping knowledge based on
the types and thus motivates a type-based search-driven ap-
proach for mapping predicates.

Second, guided by the application requirements, we
need to carefully design the system architecture of the form
assistant. In particular, to realize source-generality, each
component of the system should incorporate general tech-
niques to cope with heterogeneities for new sources. To
realize domain-portability, the system should require min-
imal amount of human involvement to customize the form
assistant for new domains.

Tackling these challenges, we develop a light-weight
domain-based form assistant. We realize this form assistant
in a complete application– form assistant toolkit, which
starts from extracting the query capabilities of query forms
and finally generates suggested queries as output. We eval-
uate the entire system over real Web query forms in 8 do-
mains and the experimental results show the promise of
both our system design and predicate mapping techniques.
In summary, the contributions of this paper are:

• Framework: To realize the dynamic query translator,
we develop a light-weight domain-based form assistant,

98

which can generally handle alternative sources in the
same domain and is easily customizable to new domains.

• Techniques: At the core of the form assistant, we pro-
pose a type-based search-driven approach for predicate
mapping by leveraging the mapping localities.
The rest of the paper is organized as follows: Sec-

tion 2 formalizes the query translation problem. Section 3
presents the system architecture of the form assistant. Sec-
tion 4 motivates the type-based search-driven predicate
mapping machinery and Section 5 discusses concrete tech-
niques for realizing it. Section 6 presents our development
of other components in building the form assistant. Sec-
tion 7 reports our experimental results. Section 8 discusses
related works and Section 9 concludes the paper.

2 The Query Translation Problem
In this section, we formalize the query translation problem.
As Figure 1 illustrates, the input to the query translator is a
source query Qs on a source form S and a target form T .
The output of translator is an expression with a filtering σ
applied upon a union query Q∗

t . The union query is built
upon a set of form queries, f1, ..., fn, where each form
query is a valid way of filling the form T .

Such a translation, as Example 1 shows, needs to meet
two goals: First, the union query must be a valid query.
That is, it must be built upon only valid form queries f1,
..., fn of the target form. Second, the union query must
be “close” to the source query to minimize the selection as
the post processing. As we can see, these two objectives
are placed on the union query without considering the ac-
tual selection σ. The reason is that we can always apply
the source query Qs as the tightest filter to remove false
positives. We notice that some other works, e.g., [2], also
studied the “optimality” of the filters, i.e., to choose a fil-
ter with fewest number of predicates. We do not consider
this issue in our paper since it is straightforward to get an
optimal filter for a union query.

We thus define the query translation problem as: Given
a source query Qs and a target form T , among all the valid
union queries of T , we choose the one semantically closest
to Qs as the best translation. Next, we need to formally
define valid union query and semantic closeness.
Query Model

The query model of a source describes templates of ac-
ceptable queries. Many specification languages, e.g., [19],
have been proposed for describing general data sources,
often in the form of datalog or context-free grammar.
However, since developed for general purposes, those lan-
guages, although sufficiently powerful, are not very intu-
itive for expressing query forms. Therefore, we adopt a
simple query model to describe source capabilities, which
we will discuss below. This query model can be automat-
ically recognized by our previous work on form extraction
[22]. Further, as Section 6 will discuss, when necessary,
this model can be transformed into other specification lan-
guages and thus we can apply existing query rewriting tech-
niques.

The query model of a form consists of vocabulary Σ
and syntax F . Vocabulary Σ specifies a set of usable pred-
icate templates on the query form. A predicate template is
a three-tuple [attribute; operator; value], with one or more
variables as “placeholder” to be instantiated by concrete
values. For instance, Figure 2(a) shows the vocabulary of
the target form T in Figure 1, which contains five predicate
templates {P1, . . . , P5} on attributes author, title, subject,
isbn and price respectively. In particular, P1 =[author; con-
tain; $au] queries on attribute author with a default operator
contain applied to a value parameter $au.

Further, upon the vocabulary of predicate templates, the
syntax F specifies all the valid combinations of these tem-
plates with respect to the form. Like many other specifica-
tion languages, e.g., [19], our syntax focuses on conjunc-
tive queries, because it is sufficient to capture the capabili-
ties of most deep Web sources. We name a valid combina-
tion of predicate templates a conjunctive form.

We observe that deep Web sources often have two types
of constraints on how predicate templates can be queried
together. First, some predicate templates may only be
queried “exclusively.” For instance, form T allows only
an exclusive selection among attributes author, title, sub-
ject and ISBN; P1, P2, P3 and P4 can thus only appear
one at a time (with an optional P5). Second, a form may
have “binding” constraints, which require certain predicate
templates be filled as mandatory. For instance, form T
may require price not be queried alone and thus each form
query must bind a predicate template from P1, . . . , P4. In
our modeling, we thus define F as all valid conjunctive
forms that satisfy these two constraints. For instance, form
T requires one template from P1, . . . , P4 with an optional
P5, and thus its syntax contains eight conjunctive forms
F = {F1, . . . , F8}, as Figure 2(a) shows. (In section 6,
we will discuss the construction of such a model for a
query form, especially how to deal with the binding pat-
terns which are usually not explicitly indicated in the form.)

Based on the above modeling, we can define what a
valid union query is, given the target form. To begin with,
we define a predicate pi as an instantiation of a predicate
template Pi, i.e., assigning concrete values for the parame-
ters in Pi. For instance, p1 in Figure 2(b) is an instantiation
of P1. Further, a form query fj is an instantiation of a con-
junctive form Fj , e.g., f1 in Figure 2(b) is an instantiation
of F1. Overall, a valid union query on the target form is
thus f1 ∨ . . . ∨ fn, where fi is a form query. In particular,
Figure 2(b) shows a valid union query Qt on form T .

We limit our focus on union only translations, as many
other works [18, 19] do, because of two reasons. First, the
union operation is “non-blocking,” which allows results to
be incrementally constructed, while intersection is “block-
ing.” Second, an intersection (e.g., A ∩ B) usually can be
more efficiently realized by a selection (e.g., σBA) without
retrieving input from one of the operands (e.g., B).

Semantic Closeness
To capture the closeness between a valid query and the

source query, we need to define a closeness metric. In par-

99

Σ
P1 = [author; contain; $au] P2 = [title; contain; $ti]
P3 = [subject; contain; $su] P4 = [ISBN; contain; $isbn]
P5 = [price; between; $s,$e]

F
F1 = P1 ∧ P5 F2 = P2 ∧ P5 F3 = P3 ∧ P5 F4 = P4 ∧ P5

F5 = P1 F6 = P2 F7 = P3 F8 = P4

Predicate

p1 = [author; contain; Tom Clancy]
p2 = [title; contain; red storm]
p1

5
= [price; between; 0-25]

p2

5
= [price; between; 25-45]

Form query f1 = p1 ∧ p1

5
f2 = p1 ∧ p2

5

Union query Qt =f1 ∨f2

(a). Query model M of form T . (b). Example instantiations of query model for form T .

Figure 2: Query model and example instantiations for form T .

ticular, we adopt the minimal subsuming metric Cmin, i.e.,
Definition 1: Given a source query Qs and a target query
form T , a query Q∗

t is a minimal subsuming translation
w.r.t. T if:

1. Q∗
t is a valid query w.r.t. T ;

2. Q∗
t subsumes Qs, i.e., for any database instance Di,

Qs(Di) ⊆ Q∗
t (Di);

3. Q∗
t is minimal, i.e., there is no query Qt such that Qt

satisfies (1) and (2) and Q∗
t subsumes Qt.

We choose Cmin as many other query rewriting works
[16, 2] do, because it has several advantages: First, a Cmin

translation does not miss any correct answer and contains
fewest incorrect answers. Consequently, the overhead of
filtering out “false positives” (in the selection operation) is
minimal. Second, the Cmin metric is database content in-
dependent, as the above definition indicates. Since human
users usually are not aware of the content before querying
a source, such content independent translation is consistent
with users’ behavior. Also, in Section 5, we will apply this
property to generate a complete database for subsumption
testing. Third, it enables the separation of predicate map-
ping from query rewriting, as Section 3 will discuss.

The following example demonstrates a translation using
the Cmin metric.
Example 2: Consider the source query Qs in Example 1
and three valid queries Qt1 , Qt2 and Qt3 as below, wherein
predicate p1, p2, p

1

5
and p2

5
were introduced in Figure 2.

Qt1 (f1 : p1 ∧ p1

5
) ∨ (f2 : p1 ∧ p2

5
)

Qt2 f2 : p1 ∧ p2

5

Qt3 f3 : p1

We can see that Qt1 and Qt3 subsume Qs, while Qt2

does not, because it misses the price range between 0 to 25
and thus cannot be the best translation. Further, between
Qt1 and Qt3 , we can prune Qt3 because it subsumes Qt1

and thus cannot be the Cmin translation. In fact, we can
show that Qt1 is the Cmin translation.

3 System Architecture
To realize the query translation as defined in Section 2, con-
ceptually we need to search among all valid queries for the
minimal subsuming one. This is certainly inefficient. To
avoid exhaustive “search,” we want to “construct” the best
translation. In particular, since translation essentially is to
reconcile the heterogeneities at the three levels, it is thus
desirable to address them separately, and then construct the
translation by putting them together. That is, we first find
the matching predicates, then map each pair of matching

���������
	�	
��	��������

Form Extractor Form Extractor

Source query Qs Target query model

Attribute Matcher:
Thesaurus-based schema matching

Predicate Mapper:
Type-based search-driven mapping

Query Rewriter:
Constraint-based query rewriting

Target query Qt*

Domain-specific
thesaurus

Domain-specific
type handlers

Built-in mechanism
Customized

domain knowledge

Figure 3: System architecture of the form assistant.
predicates individually by the Cmin metric, which com-
poses a mapped query, and finally find the Cmin rewriting
of the mapped query on the target form.

Is such separation possible? While the separation of
predicate mapping from attribute matching is obvious, how
about the separation of query rewriting from predicate
mapping? To guarantee the correctness of such separation,
we require that the mapped query, generated by mapping
predicate individually, must be rewritable to a minimal sub-
suming translation. This requirement has two implications:
First, the mapped query must be rewritable to a valid trans-
lation (if a valid translation of the source query exists at
all); second, the rewriting of the mapped query must be an
overall minimal subsuming translation. In our extended re-
port [23], we show that under the Cmin translation metric,
the mapped query meet these two requirements and thus
predicate mapping and query rewriting can be separated.

The separation thus enables a modular design for the
form assistant, which consists of three components: at-
tribute matcher, predicate mapper and query rewriter, as
Figure 3 shows. First, attribute matcher discovers seman-
tically corresponding attributes. Then, for each pair of
matching predicates, predicate mapper maps the source
predicate to the target one with the Cmin metric. After
matching attributes and mapping each individual predicate,
we get a mapped query. Finally, query rewriter rewrites the
mapped query to a valid query in terms of the capability of
the target form. Example 3 illustrates the functionality of
each component with a concrete example.
Example 3: Consider the translation example in Exam-
ple 1, where source query Qs = s1 ∧ s2 ∧ s3 ∧ s4. First,
attribute matcher will find that s1, s2 and s4 have matching
attributes in T , while s3 does not. Then, predicate mapper
will map each pair of matching predicates with the Cmin

100

metric. In particular, for s1, the mapped predicate is p1

= s1; for s2, the mapped predicate is p2 = s2; for s4, the
mapped predicate is p1

5 ∨ p2
5, where p1

5 = [price; between;
0-25] and p2

5 = [price; between; 25-45]. After matching and
mapping, the mapped query is thus Q

′

s = p1∧p2∧(p1
5∨p2

5).
Finally, applying the query rewriting, we can rewrite Q

′

s

into σp2
(f1∪f2), where f1 = p1∧p1

5 and f2 = p1∧p2

5. The
union query f1 ∪ f2 is thus (one of) the best translation Q∗

t

for source query Qs, and the selection σp2
is a part of the

final filter, which we omit here.

Such modularization on one hand reduces the complex-
ity of translation– Each component only focuses on a sub-
problem to solve. On the other hand, it allows us to plug in,
for each component, corresponding techniques suitable for
specific application needs. In particular, attribute match-
ing and query rewriting have been extensively studied. Our
form assistant can thus take advantage of the existing tech-
niques by taking them as building blocks of the system.

To prepare the input for the form assistant, we explore
the form extractor we developed in [22] to automatically
extract query capabilities of sources. Next, we need to de-
sign each component of the form assistant to satisfy the ap-
plication requirements, i.e., source-generality and domain-
portability. The key is to identify, for each component,
what knowledge can be built-in as generic techniques and
what should be customized as domain-specific knowledge.
Further, we want the customized knowledge to be per-
domain based instead of per-source, and we want to keep
such knowledge within human-manageable scale.

Attribute Matcher: To match attributes is essentially
to identify synonym attributes. This problem, known as
schema matching, has been an important problem and thus
extensively studied in data integration. Depending on the
application scenarios of the form assistant, we can employ
either automatically discovered or manually encoded syn-
onym thesaurus, based on which we can explore a general
thesaurus-based matching approach. For instance, for the
MetaQuerier system (discussed in Section 1), since sources
are on-the-fly selected and thus form dynamic domains,
the thesaurus has to be automatically discovered by explor-
ing existing automatic matching techniques, e.g., [11, 12].
While for domain portals and form assistant toolkit, since
sources are in pre-configured domains, the thesaurus can be
manually customized with more reliable domain-specific
knowledge. Our survey [4] on query forms shows that, for
each domain, there only exist a small number of frequently
used attributes, which makes the manual encoding of such
a domain-specific thesaurus feasible in practice.

Predicate Mapper: To map predicates, we need to
know, for each pair of matching predicates, how to choose
the operators and fill in the values. To achieve the require-
ment of easy deployment for new domains, we thus ask
whether there exists domain-generic mapping mechanism
which addresses most if not all mappings in various do-
mains. We observed that, as an enabling insight, pred-
icates with the same data type often share similar map-
ping patterns. Motivated by this observation, we develop

r1 [author; contain; $t] → emit: [author; contain; $t]
r2 [title; contain; $t] → emit: [title; contain; $t]
r3 [price; under; $t] → if $t ≤ 25, emit: [price; between; 0,25]

elif $t ≤ 45, emit: [price; between; 0,25] ∨ [price; between; 25,45]
. . .

Figure 4: Example mapping rules of source S and target T .
a type-based search driven mapping approach with several
built-in type handlers to handle the majority cases of gen-
eral “built-in” types. For those domain-specific mappings
(e.g., airport code to city name in airfares domain), we can
customize the required mapping knowledge by adding new
type handlers if needed.

Query Rewriter: To tackle the query-level heterogene-
ity is essentially to rewrite the query to satisfy the syntax
constraints of the target form. Such a task, has been studied
as capability-based query rewriting [18, 20, 15], is not spe-
cific to any source or domain. Hence, as Figure 3 shows,
the query rewriter component can be entirely built-in into
the system. Section 6 will discuss our development of this
component by exploiting existing rewriting techniques.

4 Predicate Mapping: The Motivation
With extensive existing study on schema matching and
query rewriting, together with our modular separation
of predicate mapping from query rewriting, the essen-
tial challenge of translation boils down to predicate map-
ping. As Section 3 motivated, the requirement of easy-
customization calls for domain-generic mapping knowl-
edge. Does there exist such generic mapping knowledge
applicable to sources across different domains? How to en-
code such knowledge? Those are the critical questions we
need to address in predicate mapping.

Existing solutions on predicate mapping usually assume
a static small-scale setting. In such scenarios, it is com-
mon, e.g., as [2] studies, to use a source-based pairwise-
rule driven mapping machinery to map predicates. Figure 4
gives some example rules to encode the mapping knowl-
edge required for translation in Example 1.

However, such a mapping machinery, characterized by a
“per-source” knowledge scope and “pairwise” rule encod-
ing mechanism, is not suitable for our light-weight domain-
based form assistant, since it lacks both generality and ex-
tensibility. To begin with, the source-based scope can only
handle mappings between sources whose mapping knowl-
edge has been specified. It cannot generally deal with map-
pings involving “unseen” sources. Also, the pairwise-rule
mechanism to encode the knowledge is not extensible be-
cause writing rules for each pair of predicate templates is
hard to scale when mapping are required among a large
set of sources. Further, as sources are autonomously de-
veloped, their query capabilities may change, which makes
maintenance of rules labor intensive.
4.1 A Motivating Survey

To understand the feasibility of developing a more general
and extensible mapping machinery, we thus ask: Are there
generic scopes orthogonal to domains wherein the mapping
happens? If such scopes exist, we thus can leverage them
to encode our domain generic mapping knowledge.

101

Locality 1

Locality 2

Locality 3

1 5 10 15 20 25 30 35

template #
te

m
pl

at
e #

1
5

10
15

20
25

30
35

template 25:

template 30:

Semantic correspondences:
(25, 30): on book subject, book publisher, …

e.g.

e.g.

template 32:

$val] , attr,[=

{D}]$val , attr,[∈=

{D}]$val , attr,[⊂=
e.g.

(25, 32): on book subject, book publisher, …
(30, 32): on book subject, book format, …0 4 8 or more

Legend:

Figure 5: The correspondence matrix.
To answer this question, we conduct a survey to exam-

ine the mapping correspondence between predicate tem-
plates. Such mapping correspondence hints the required
translation scope: only templates with mapping correspon-
dence need to be translated. In particular, we examined 150
query forms in three domains, i.e., Books, Airfares and Au-
tomobiles, in the TEL-8 dataset of the UIUC Web Integra-
tion Repository [5]. This TEL-8 dataset contains around
440 manually collected deep Web sources with their query
forms. We totally find 37 template patterns in 150 sources.
For instance, as two popular patterns, [attr; default; $val]
uses a default operator and accepts arbitrary values from
the user input (e.g., template P1 in T belongs to this pat-
tern), and pattern [attr; default; $val∈{D}] accepts a value
from a set of given options (e.g., P5 in T belongs to this
pattern). In the rest of the section, we will use template to
generally refer to template pattern for simplicity.

We notice that two predicate templates have mapping
correspondence only if there exists a concept expressed
with these two templates in different sources. For ex-
ample, to support querying book subject, a source may
use [subject; default; $val] and another [category; default;
$val∈{D}]. Since subject and category are matching at-
tributes, templates [attr; default; $val] and [attr; default;
$val∈{D}] need to be translated and thus have mapping
correspondence. We record such mapping correspondence
between any two predicate templates Pi and Pj in a cor-
respondence matrix CM . In particular, CM(i, j) denotes
the number of concepts that are expressed using both tem-
plates Pi and Pj . Figure 5 shows our survey result (i.e.,
the correspondence matrix), where the value of CM(i, j)
is illustrated as the degree of grayness.

As Figure 5 indicates, mappings happen mostly only
within certain clusters of templates. In the figure, we or-
der the templates in a way to clearly observe such locali-
ties: In particular, we observe three localities of templates
among which mapping happens. Such mapping localities
thus formulate the scope of mappings.

We further ask: What templates can share a local-
ity? Are there something common among templates in the
same locality? Not surprising, we found there is indeed
an underlying explanation for the phenomenon. While the
predicate templates in a locality are used by various con-
cepts in different domains, those concepts often share the

same “data type.” In particular, the first locality in Fig-
ure 5 corresponds to templates usually used by concepts of
datetime type, the second one numeric type and the
third one text type. The only outlier is the template [attr;
default; $val], as shown in Figure 5. Concepts with different
data types can all use this template to express their query
predicates and this template thus has mapping correspon-
dence to most other templates.

4.2 Type-based Search-driven Predicate Mapping

Our observations above clearly reveal that mapping be-
tween predicate templates are not arbitrary– Their asso-
ciations not only suggest “locality,” but also are clearly
“aligned” with their underlying data types. Such observa-
tion motivates a type-based search-driven predicate map-
ping machinery.

First, our observation shows the promise of pursuing
a type-based knowledge scope. Since mappings are only
worthy inside localities of types, we can express the map-
ping knowledge in the scope of types. Such a type-based
mapping scope is more general than the source-based or
domain-based scope, since data types are widely reused
across different sources and domains, and we are able to
translate queries to unseen sources or adapt the knowledge
to new domains as long as they reuse those data types.

Second, we find that data type gives us a “platform”
to compare semantics (i.e., the subsuming relationship) of
different mappings and thus enables an extensible search-
driven mechanism. Instead of writing rules to hard code
the mapping for every pair of predicate templates, we can
encode our mapping knowledge as an evaluator for each
template. This evaluator “materializes” the semantics of a
query against a type specific platform, as Section 5.1 will
discuss. By doing so, semantic comparison can thus be
performed on the materialized results. For instance, to real-
ize rule r3 in Figure 4, we can project the source predicate
as well as all target predicates onto an axis of real num-
bers, and thus compare their semantics based on their cov-
erage. Finding the closest mapping thus naturally becomes
a search problem - to search for the ranges expressible in
the target form that minimally cover the source. Such a
search-driven approach achieves extensibility by exploring
evaluators rather than static pairwise rules. With a data type
of n templates, we only need n evaluators instead of n2

rules; when adding a new pattern, only one evaluator needs
to be added instead of n rules.

5 Predicate Mapping: The Solution

In this section, we discuss our development of predicate
mapper, which realizes the type-based search-driven map-
ping machinery. According to our system design (Sec-
tion 3), predicate mapper takes a source predicate s and a
matched target predicate template P as input, and outputs
the closest target translation t∗ for s. In particular, predi-
cate mapper consists of two components: type recognizer
and type handler, as Figure 6 shows. Type recognizer rec-
ognizes the data type of the predicates and then dispatches

102

Target Predicate t*

Type
Recognizer

Domain
Specific
Handler

Text
Handler

Numeric
Handler

Datetime
Handler

Predicate
Mapper

Source predicate s Target template P

Figure 6: Framework of predicate mapper.
to a corresponding type handler. A type handler maps pred-
icates of a specific type with a search approach.

Since our focus in this section is type handler, we only
briefly discuss the development of type recognizer. In par-
ticular, since the data type of a predicate can often be hinted
by its syntactic features, we explore those syntactic clues
to implement the type recognizer. For instance, we can ex-
ploit distinctive operators (e.g., all, any for text type), the
value filled in the source predicate (e.g., s3 in Example 1
contains value 35) and the value domain in the target tem-
plate (e.g., a selection list of P5 in Example 1) to infer type
information. We have developed a type recognizer in our
previous work for schema matching [12], wherein the type
information is used to help matching. Due to space limita-
tion, please refer to [12] for more details.
5.1 Overview of Type Handler

At core of the predicate mapping, each type handler real-
izes the search-driven mechanism for its responsible type.
Like any other search-based algorithms, a type handler
needs to have three key components: search space, close-
ness estimation, and search strategy.
Example 4: Consider a predicate mapping problem. The
source predicate is s = [category; contain; "computer
science"] and the target predicate template is P =
[subject; $op; $val], where the operator $op is from { "any
words" , "all words" } (simply as "any" , "all").
Defining Search Space

Defining a reasonable search space is essential to any
search process, because it impacts the complexity of search
significantly. Given a predicate template P , we define in-
stance space of P , denoted by I(P), as all possible instan-
tiations (i.e., predicate) of P . Due to the predicate-level
heterogeneity, we often need to map a source predicate into
multiple target predicates (e.g., the price predicate in Exam-
ple 1). We thus define the search space of P , denoted by
Ω(P), as any disjunction of predicates in I(P). Each item
in Ω(P) thus corresponds to a possible mapping.

As I(P) often can be infinite, we take a “close-world”
assumption to shrink the search space. Specifically, while
operators are clearly limited by P (e.g., two operators any,
all in Example 4), the values can often be infinite– for a
predicate template without pre-defined domain of values
(e.g., an attribute name with a text input box), any value
can be filled in, which thus results in an infinite instance
space. To define a reasonable space of I(P), we make a

instance space I(P) :
p1 : [subject; any; "computer"]
p2 : [subject; all; "computer"]
p3 : [subject; any; "science"]
p4 : [subject; all; "science"]
p5 : [subject; any; "computer science"]
p6 : [subject; all; "computer science"]
search space Ω(P) :
t1 = {p1}, t2 = {p2}, t3 = {p3}, t4 = {p4}, t5 = {p5}, t6 = {p6}
t7 = {p1, p2}, t8 = {p1, p3}, t9 = {p1, p4}
t10 = {p1, p5}, t11 = {p1, p6}

Figure 7: The instance space and search space of P .
“closed-world” assumption: We denote the values filled in
the source predicate s as Ws. For a target template with-
out pre-defined domain of values, we assume the values
of the target predicate can only choose from Ws. There-
fore, we define the instance space I(P) as all possible in-
stantiations of P using values either in a pre-defined do-
main if it is available or composed from Ws otherwise. For
instance, in Example 4, the target template P is thus re-
stricted to the words used in the source predicate, i.e., Ws =
{"computer" , "science" }. Figure 7 shows the instance
space and part of the search space of P . In particular, with
the close-world assumption, the instance space of P con-
tains 6 possible instantiations.

Such a close-world assumption is reasonable, because
without domain-specific knowledge, it is difficult to invent
new values. In fact, the search space can be enriched (e.g.,
by expanding queries words with their synonyms) if more
domain knowledge is available (e.g., by providing synonym
thesaurus), as we will discuss in Section 5.3.

Closeness Estimation
Given the search space Ω(P) covering all possible map-

pings, finding a Cmin mapping boils down to inferring sub-
sumption relationship between a mapping and the source
predicate, and between two mappings. This inference is
specific to data types– For some types, it is straightforward,
while others, it is not. In particular, for numeric type, since
a predicate with numeric type can be projected to an axis
of real numbers, evaluating subsumption relationship upon
the numeric axis becomes an easy task. Datetime type can
be processed in similar way as numeric type and thus we
discuss their handlers together in Section 5.2. However,
for text type, the inference of subsumption relationship is
not trivial since it essentially needs logical reasoning. To
avoid convoluted logical inference, we develop an equiva-
lent “evaluation-by-materialization” approach. Section 5.2
will discuss this approach in details.

Search Algorithm
With the subsuming testing, we can find the Cmin map-

ping using the following simple algorithm, where s, P are
the source predicate and target template, H records all sub-
suming mappings and R records Cmin mappings and x is
the returned mapping:
1. H = ∅, R = ∅
2. for ∀t ∈ Ω(P):
3. if subsume(t, s): add t to H

4. for ∀t ∈ H:

103

5. if @t′ ∈ H and t′ 6= t such that subsume(t, t′)

6. add t to R

7. choose an x ∈ R with minimal number of predicates

This algorithm, generally used by all type handlers, ba-
sically exhausts the entire search space Ω(P) to find all
Cmin mappings, and then chooses the one with minimal
number of predicates to minimize the number of form
queries issued on the target form. To improve its efficiency,
we may refer to an approximate algorithm. In particular,
we can take a greedy approach in practice: We find the
mapping iteratively and in each iteration, we look for a
(not-selected) instantiation from I(P) that maximally cov-
ers the uncovered part of the source predicate s until we
can entirely cover s. If there are multiple candidates which
have the same coverage over the uncovered in an iteration,
we choose the one with minimal overall coverage to mini-
mize false positives.
5.2 Built-in Handlers

Text Type Handler: Text is the most commonly used
type in query forms for querying string-based fields (e.g.,
subject in Example 4). We will use the mapping task in this
example to illustrate how the search proceeds towards find-
ing the best mapping of the target template P . In Figure 7,
we have illustrated the instance space and search space of
P . Next, we need to develop an approach to evaluate the
subsumption relationship of text type.

While it may be possible to logically reason the sub-
sumption relationship, such an approach can be very con-
voluted. On one hand, we have to encode for each opera-
tor, its logic relation with all other operators, e.g., in a form
of pairwise rules or operator subsumption lattice [3]. On
the other hand, it is also non-trivial to apply those rules
to reason between queries involving complex boolean ex-
pressions. Further, it is not extensible, since adding a new
operator (e.g., start with) requires encoding its relationship
with every existing operators (e.g., any, all, exact).

To circumvent such reasoning, we employ an
“evaluation-by-materialization” approach. The idea
is that, instead of semantically reasoning the subsumption
relationship between two queries Q1 and Q2, we can “ma-
terialize” them against a database instance D and compare
the query results Q1(D) and Q2(D). The question is
which database instance can be used to reliably test the
subsumption relationship? It is obvious that we cannot
arbitrarily choose a database instance Di. We observe
that a “complete” database D, which conceptually is the
union of all possible database instances Di, satisfies our
requirement.
Property 1: Given two queries Q1 and Q2, and a complete
database D =

⋃
Di, Q1 semantically subsumes Q2 if and

only if Q1(D) ⊆ Q2(D).
The “only if” direction obviously holds, and we only

show the “if” direction informally. Let us suppose that
Q1(D) ⊆ Q2(D) but Q1 does not semantically subsume
Q2. Then there exists a database instance Di such that
Q1(Di) * Q2(Di), i.e., ∃x ∈ Q1(Di) and x 6∈ Q2(Di).

Complete Database D: C, S, D, CS, CD, SC, SD, DC, DS, CSD, CDS,
DSC, DCS, SCD, SDC
Source Predicate Materialization
c : [category; contain; CS] CS, SC, CSD, CDS, DSC, DCS,

SCD, SDC
Mapping Materialization
t1 : [subject; any; C] C, CS, CD, SC, DC, CSD, CDS,

DSC, DCS, SCD, SDC
t2 : [subject; all; C] same as above
t3 : [subject; any; S] S, CS, SD, SC, DS, CSD, CDS,

DSC, DCS, SCD, SDC
t4 : [subject; all; S] same as above
t5 : [subject; all; CS] CS, SC, CSD, CDS, DSC, DCS,

SCD, SDC

Figure 8: Example of database and evaluation results.
This means that Q2(x) is false and thus for any database
instance Dj , Q2(Dj) cannot contain x. Therefore, Q2(D)
cannot contain x, and Q1(D) * Q2(D). This is contradic-
tory to our assumption and thus the property holds.

Next, the question becomes how to construct such a
complete database? Conceptually, a complete database is
a complete enumeration of all possible phrases composed
from English words (assuming we only handle English).
This is simply too huge to construct and we thus need to
look for a practical solution.

We observe that the “completeness” of a database de-
pends on the “logical properties” to be tested by operators.
For instance, operators contain and any concern only mem-
bership of words in a string field without caring their or-
dering, while operators start and exact concern both mem-
bership and sequence. In practice, we observe that mem-
bership and sequence can almost cover all the operators for
text type. Therefore, we construct the database using words
from Ws plus some additional random words. The database
is composed of all possible combinations of the words (for
testing the membership) with all possible orders (for test-
ing the sequence). Since the exact set of additional words
used in the test database does not matter, we thus can use
a small number of random words to generally represent all
words outside Ws. In our implementation, to avoid con-
structing a database for every mapping, we use a set of five
fixed words to construct a static database. At runtime, we
dynamically designate each word to represent a particular
constant in Ws. If the size of Ws is greater than 5, we will
dynamically construct a test database.

To test subsumption between a mapping and the source
predicate, we build a database D with alphabet D =
{computer, science, dummy}, as Figure 8 shows the con-
tent. For simplicity, we use only initials for corresponding
words. Figure 8 shows, for source predicate c and each
mapping ti in the search space, the result set against the
complete database. As we can see all the listed mappings
are subsuming mapping. Among them, t5 is Cmin map-
pings as it subsumes no other mappings. Alternatively, the
greedy approach searches over all predicates in I(P) can
also find the right mapping t5, but it is much more efficient.

Numeric & DateTime Handler: Numeric and datetime
have very similar nature in that they all form a linear

104

space, and have similar operators, such as ≤ vs. before, be-
tween vs. during and so on. In fact, datetime is internally
presented as an integer in many programming languages.
Therefore, the mapping techniques for the two types are
generally the same. In this section, we will thus focus on
numeric type and the general discussion applies to datetime
type too.

We use an example to run through the mapping pro-
cess. Consider mapping between the price predicates in
Example 1. Since the target predicate has a pre-defined do-
main of values, each representing a range, our search space
is restricted to disjunctions of those ranges. To estimate
the closeness, we project the source predicate c :[price;
≤; 35] and the target predicate, e.g., p1

5
:[price; between;

0,25] into ranges in numeric line. By projecting c and p1
5

to the numeric line, their false positive range (empty) and
false negatives (25, 35) can be straightforwardly evaluated
as their coverage on the line. Using the greed search ap-
proach, we will choose the one that maximally covers the
uncovered range. Therefore, we choose range (0, 25) and
(25, 45) in turn, which forms our mapping [price; between;
0,25] ∨[price; between; 25,45].

5.3 Domain Specific Type Handler

While the type handlers discussed above handle domain-
generic types, there are situations where domain specific
knowledge is required, such as handling m:n mappings
(e.g., from lastname, firstname to author) or mappings that
need domain-specific ontology (e.g., from [subject; equal;
computer science] to [subject; equal; computer architecture]).
Since the focus of the paper is built-in type handlers, we
refer readers to the extended version [23] for discussions
on implementation of domain specific type handlers.

6 Implementation: Form Assistant Toolkit

With form assistant as a core component to many appli-
cations, in this section, we study an example application–
building a form assistant toolkit, to concretely evaluate the
effectiveness of our approach. Form assistant toolkit is a
browser based toolbar, which gives users suggested trans-
lations across sources in the same domain. In particular,
users can register a query of her interest, e.g., a query on
amazon.com, and when she browses other sources in the
same domain, e.g., barnesandnoble.com, she can ask for
suggested translation. This toolbar is pre-configured with
a set of supported domains, and users need to specify the
domain of interaction when registering a query.

When activated, the assistant will automatically trans-
late the source query to the target form. To prepare the in-
put to translation, the assistant has a form extractor module
to automatically extract the query capability of the target
form. With predicate mapping addresses the predicate het-
erogeneity, in this section, we briefly discuss the remaining
three components - form extractor, attribute matcher and
query rewriter to complete the framework.

Form Extractor: Form extractor automatically constructs
the query capability of a form to prepare the input for form

assistant. We have studied the problem of form extrac-
tion in [22], which extracts the set of predicate templates
as vocabulary from a query form, by applying a parsing
approach with a hypothetical grammar. In particular, the
grammar captures the common template patterns, for which
we encode their semantics, and the parser generates a parse
tree that decomposes the query form into such template pat-
terns. As the parsing result, a set of predicate templates is
output in the format of [attr; op; val].

To further construct the syntax of query capability, as
Section 2 discussed, we identify the exclusively queried at-
tribute and the required fields in query forms. The exclusive
predicates are usually presented in a pattern, where a set
of attributes is enumerated in radio-button or selection list,
with a textbox accepting input. Therefore, by incorporating
this pattern in the grammar, the same form extractor auto-
matically recognizes such exclusive attributes. The set of
common attributes is preconfigured as domain knowledge,
which is used in attribute matching as well. Identifying re-
quired fields is a challenging task because there usually is
no standard way of indicating those fields. However, most
existing rewriting techniques can accommodate this prob-
lem by pushing as many predicates as possible to each form
query. We will discuss this issue in query rewriter module.

Attribute Matcher: Attribute matcher identifies the se-
mantical corresponding attributes. Our attribute matcher
is customized with a domain thesaurus, which indexes syn-
onyms for commonly used concepts. At runtime, attribute
matcher fuzzily matches the input attributes with those syn-
onyms to check whether they express the same concept. In
particular, the attribute matcher consists of two steps:
Preprocess: Given two predicates, the preprocess step per-
forms some standard normalization, including, stemming,
normalizing irregular nouns and verbs (e.g., “children” to
“child,” “colour” to “color”) and removing stop words.
Synonym check: After preprocessing, synonym check
checks whether the two predicates match. We view in-
put predicates as matched if their types match and their at-
tributes are synonyms. The reason for checking on types
is that some attributes, e.g., departure, arrival in airfares,
must be accompanied by their type to reflect its semantics
(e.g., departure city or departure date). To do so, we rec-
ognize the types of the predicate using the same type rec-
ognizer used in predicate mapping of Section 5. If their
types match, we further check whether they are synonyms.
In particular, for each input attribute, we first search for its
“representative,” which is an indexed attribute in the the-
saurus with the highest similarity score above a predefined
threshold. If the system successfully finds the representa-
tives for both attributes and both representatives correspond
to the same concept, we return them as matching attributes.

Query Rewriter: Query rewriter takes a mapped query
and constructs a minimal subsuming query as the best
translation. The core of this translation is a well-studied
problem known as capability-based rewriting. Many ex-
isting solutions, e.g., [19, 16, 15], can be applied here by

105

transforming our query model into their specification lan-
guages. In particular, our rewriter builds upon the tech-
niques developed in [18], which generates a minimal sub-
suming rewriting of a query. Essentially, this approach
pushes as many predicates as possible to each form query
so that it maximizes the use of source query capability.

Finally, we discuss the issue of incomplete modeling of
required fields in form extraction. We find that, for a re-
quired field of a target form, as long as the source query fills
in the corresponding matched predicate, the query rewriter
is able to find a valid rewriting even without explicitly mod-
eling of this required field. Let us use an example to infor-
mally illustrate this point. Consider the target query form
T . If we fail to identify that at least one of the four pred-
icates on author, title, subject, ISBN is required, we may
enlarge the search space by including “false” translations
which fill in none of these four fields. In this example,
queries with only price predicate, e.g., [price; between; 0,25]
are (falsely) regarded valid. However, the query rewriter
will not choose such a translation because it is not minimal
subsuming– more predicates, e.g., p1, can be pushed to the
form query to make it more specific. Therefore, as long as
the source query specifies those fields required by the target
form, our translation will not abuse those “false” instances
even if we do not explicitly capture those required fields.
(If the source query does not specify those required field,
we cannot have any valid translation at all.)

7 Experiment

Experimental Data: To evaluate the complexity of de-
ploying the form assistant and the accuracy of the trans-
lation, we collected 120 query forms from 8 domains of
the TEL-8 dataset [5]. In particular, we separate the forms
into two datasets - Basic dataset and New dataset. The
Basic dataset contains 60 query forms with 20 from each
of the three domains we surveyed (Section 4.1). The pur-
pose is to evaluate the complexity of domain knowledge
needed for translation and the performance over sources
from which the types and their patterns are derived. The
New dataset contains 60 query forms, which we sampled
from 5 domains (i.e., CarRentals, Jobs, Hotels, Movies and
MusicRecords) in the TEL-8 dataset. The purpose is to test
how well the type handlers can apply to new domains.

Experiment Setting: The experiment evaluates the trans-
lation accuracy between two randomly picked forms in the
same domain. In particular, suppose a domain has n forms
as [Q1, . . . , Qn]. We random shuffle those forms to get a
permutation [Qi1 , . . . , Qin

], and translate queries between
(Q1, Qi1), . . . , (Qn, Qin

). With 120 forms in total, we
thus evaluate 120 translations.

We manually prepare the commonly used concepts and
synonyms, as the domain-specific thesaurus, for each do-
main. In particular, for each of the Airfares, Books and
Automobiles domains, those concepts and synonyms are
prepared based on 20 forms randomly sampled from the
forms used in the survey of Section 4.1. We store only con-
cepts appearing in more than one source. We apply those

knowledge to new forms to understand the feasibility of
manually preparing matching knowledge and the impact of
mismatching to translation accuracy.

To avoid biased queries against different sources, we
randomly generate queries. Given a source form Qi, we in-
stantiate its query templates by randomly choosing a value
for each variable. In particular, if the domain of the vari-
able is finite with a set of pre-defined options, we randomly
choose one from these options. Otherwise, we randomly
generate a value with the corresponding type. The query
generated in the experiment is thus “maximal,” i.e., it in-
stantiates all predicate templates in the source form. As we
will see in the following discussion, as one of our perfor-
mance metric measures the percentage of queries that are
perfectly translated, using a maximal query thus measures
the worst-case performance.

Performance Measurement: In the experiment, we mea-
sure two aspects of the system performance: the translation
accuracy and the complexity of customization.

Translation Accuracy: For the translation accuracy, we
measure how many mappings in the suggested translation
are correct, which indicates the amount of efforts the form
assistant saves for users. In particular, we adopt a form-
based metric: For a source query Qs and a target form T ,
let P (Qs, T) denote the number of predicates in the tar-
get query, and R(Qs, T) denote the number of predicate
templates correctly filled by the form assistant. The form-
based metric is defined as the percentage of correctly filled
predicate templates and is thus R(Qs, T) over P (Qs, T).

To validate the impact of 1:1 mapping assumption, for
each set of experiments, we measure the performance with
and without this assumption. Measurement with 1:1 map-
ping counts, among all 1-1 mappings, how many predi-
cates are correctly filled. For complex mapping (e.g., last-
name+firstname→author), as the form assistant does not
handle such mappings, those predicates - to be filled by
complex mapping - are taken as a negative count in mea-
surement with complex mapping.

To understand the impact of other components to pred-
icate mapping, we further separately report the errors
caused by form extraction and attribute matching from
those caused by predicate mapping.

Complexity of customization: For each domain, we
only customize the domain-specific thesaurus for attribute
matcher. To evaluate how well the domain generic transla-
tion can achieve, we do not add any domain specific type
hander. That is, the form assistant handles only three do-
main generic types, as described in Section 5. To measure
the complexity of such customization, we report the num-
ber of commonly queried concepts and the corresponding
synonyms for each concept.

Experimental Result
Form-based Measurement: Figure 9 (a) and (b) report the
performance without counting the errors caused by form
extraction and attribute matching. In particular, they show
the frequency distribution over form-based metric for the

106

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Below 60 60 70 80 90 100

P
er

ce
nt

ag
e

of
 In

te
rf

ac
es

1:1 Mapping
Complex Mapping

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Below 60 60 70 80 90 100

P
er

ce
nt

ag
e

of
 In

te
rf

ac
es

1:1 Mapping
Complex Mapping

 60

 70

 80

 90

 100

Basic New

A
ve

ra
ge

 A
cc

ur
ac

y
in

 P
er

ce
nt

ag
e

Perfect
Raw

M
at

ch
in

g

6

13

14

Extraction

Mapping

(a) Accuracy distribution for
Basic dataset.

(b) Accuracy distribution for
New dataset.

(c) Average accuracy. (d) Error Distribution.

Figure 9: Translation accuracy and error distribution.
two datasets respectively. As we can see, for 1:1 mappings,
the system achieves very good results for both Basic and
New datasets - 87% of the forms achieve perfect accuracy
for the Basic dataset and 85% for New dataset. Further,
as Figure 9(a) and (b) show, the system perform reasonably
well even counting complex mappings– 76% of the forms
achieves accuracy above 80% for the Basic dataset, and
70% for New dataset.

Figure 9(c) shows the performance impact of form ex-
traction to the system (under 1:1 assumption). In particular,
it shows average accuracy of translation with and without
perfect input from form extraction. To generate perfect in-
put, we manually corrected the errors caused by form ex-
traction. As we can see, in average, we achieve 90.4% for
Basic dataset with raw input from form extraction, and by
correcting the errors of raw input, we achieve 96.1% ac-
curacy. For the New dataset, we achieve 81.1% with raw
input and 86.7% with perfect input.

We observe that error propagation from form extrac-
tion to predicate mapping is quite insignificant. One of the
reasons is that the attribute matching step helps to resolve
some ambiguities of form extraction. For instance, in pars-
ing delta.com, the form extractor generates two conflicting
predicates with the same value component but different at-
tribute names “departure date” and “One-way & multi-city
reservations” (a link to alternative reservation). However,
during matching, e.g., to aa.com, the former is matched to
the source predicate, while the later is not. Therefore, this
error caused by form extraction does not propagate. On
the other hand, error propagation from attribute matcher to
predicate mapping is more significant since a mismatching
will finally lead to an error translation.

Figure 9(d) further reports, among all the mappings, the
number of errors caused by each component. As we can
see, the impact of attribute matching is smallest– it causes
only 6 errors out of 33 in total; form extractor causes 13
errors and predicate mapping causes 14 errors. The major-
ity errors in predicate mapping are caused by the lack of
domain specific mapping knowledge. For instance, to map
between subject “computer science” to subject “program-
ming language,” we need a domain ontology; to map be-
tween zipcode to city, we need a domain dictionary. There-
fore, adding domain specific type handlers will be helpful
to improve the mapping performance.

Domain #. of Concepts #. of Synonyms
Airfares 13 34

Automobiles 14 17
Books 17 24
Figure 10: Size of domain thesaurus.

Complexity of domain knowledge: Figure 10 shows the
number of concepts and synonyms we prepared for each
domain. Note that the number of synonyms shown in the
figure also counts in those “singleton” concepts without
synonyms, each of which thus contributes one to the total
count. As we can see, the number of concepts and syn-
onyms needed for translation is reasonably small. For ex-
ample, the Books domain contains 17 concepts with 7 more
synonyms. More importantly, those knowledge is collected
on only 20 sources per domain, and the accuracy of match-
ing based on the prepared knowledge is very high. As Fig-
ure 9(d) shows, only 6 errors are caused by the mismatch-
ing of attributes, which is very acceptable. We thus believe
that high quality domain knowledge can be obtained at very
affordable efforts.

8 Related Work

Query translation has been actively studied in information
integration systems in the literature. In particular, we ob-
serve that the existing techniques can be classified into four
categories, to address data source heterogeneity at four lev-
els. This paper, while is closely related to those works,
clearly has its own focus: First, we focus on a specific sub-
problem of dynamic predicate mapping, which is largely
unexplored in the literature. Second, we focus on the de-
sign and development of a complete query translator, which
satisfies our requirements for a light-weight domain-based
form assistant. In this section, we connect and compare our
work with those existing solutions.
Attribute Heterogeneity: Schema matching [8, 11, 17,
14, 12, 8] focuses on mediating the heterogeneity at at-
tribute level. Those works are concrete building blocks for
form assistant. Different approaches of schema matching
suit for different application settings. Some approaches,
e.g., [11, 12, 21] require a collection of sources to mine
the matchings, which are suitable for applications such as
MetaQuerier. Others, e.g., [8, 14], perform matching across
pairwise sources, which are suitable for applications such
as a domain portal.

107

Data Heterogeneity: Schema mapping [13, 7] focuses on
addressing the heterogeneity of data format across different
sources. Its main objective is to convert a set of data records
from a source schema to a target one and thus it does not
need to cope with constraints on predicates (i.e., available
operators and values). Unlike schema mapping, which fo-
cuses on equivalence conversion, predicate mapping must
deal with more complicated semantics (e.g., any, exact in
text type and less than in numeric type).
Predicate Heterogeneity: Predicate mapping focuses on
addressing the heterogeneity of the predicates across dif-
ferent source capabilities. Existing solutions, e.g., [2] usu-
ally assume a static system setting, where sources are pre-
configured with source-specific translation rules. In con-
trast, our approach dynamically maps predicates across un-
seen sources without prepared source knowledge. Further,
the mapping in [2] depends on static rules to describe how
to choose operators and fill in the values, while we propose
a general search-driven approach to dynamically search for
the best mapping.
Query Heterogeneity: Capability-based query rewriting
focuses on mediating the heterogeneity of query syntax
across different sources. Current query mediation works
[10, 9, 20, 18, 15, 19, 16] studied the problem of how to
mediate a “global” query (from the mediator) into “local”
subqueries (for individual sources) based on capabilities
described in source descriptions. Such rewriting is essen-
tially transformation of Boolean expressions upon predi-
cates, and does not consider the heterogeneity inside pred-
icates. Therefore, predicate mapping and query rewriting
are two complementary aspects of query translation. In
particular, reference [18] focuses on Cmin query rewriting
at query level, and is thus a concrete building block of our
form assistant to achieve the overall Cmin translation.

9 Conclusion

In this work, we developed a light-weight domain-based
form assistant, which is a core component in many integra-
tion applications. For building such a system, we proposed
an architecture that satisfies the requirements of source-
generality and domain-portability. In particular, we studied
the dynamic predicate mapping problem, which, together
with existing solutions for other components, complete the
form assistant.

While the entire framework shows promise, human ef-
forts are inevitable to encode knowledge needed for trans-
lation. To begin with, for built-in type handlers, consid-
erable engineering efforts are involved to encode the do-
main independent knowledge, including understanding of
predicate templates in form extraction and their evaluation
against a database in type handlers. However, such knowl-
edge is engineered once-for-all, and it works really promis-
ing for sources across different domains. Further, for han-
dling complex situations, such as m:n mappings and do-
main specific mappings, our system needs customized type
handlers provided by domain experts. However, as our ex-
periment shows, the three basic type handlers well handle

most important and pervasive cases in the real world. In a
nutshell, the form assistant with built-in type handlers pro-
vides a good starting point for developing more sophisti-
cated translation tools with moderate human efforts.

References
[1] BrightPlanet.com. The deep web: Surfacing hidden value. Acces-

sible at http://brightplanet.com , July 2000.
[2] K. C.-C. Chang and H. Garcı́a-Molina. Approximate query map-

ping: Accounting for translation closeness. VLDB Journal 2001.
[3] K. C.-C. Chang, H. Garcı́a-Molina, and A. Paepcke. Boolean

Query Mapping Across Heterogeneous Information Sources. IEEE
Transactions on Knowledge and Data Engineering 1996.

[4] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang. Structured
databases on the web: Observations and implications. SIGMOD
Record, 33(3):61–70, 2004.

[5] K. C.-C. Chang, B. He, C. Li, and Z. Zhang. The UIUC web inte-
gration repository. http://metaquerier.cs.uiuc.edu/repository.

[6] K. C.-C. Chang, B. He, and Z. Zhang. Toward large scale integra-
tion: Building a metaquerier over databases on the web. In CIDR
Conference, 2005.

[7] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators
need data conversion! SIGMOD Conference, 1998.

[8] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of
disparate data sources: A machine-learning approach. SIGMOD
Conference, 2001.

[9] M. R. Genesereth, A. M. Keller, and O. M. Duschka. Infomaster:
an information integration system. 1997.

[10] A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4):270–294, 2001.

[11] B. He and K. C.-C. Chang. Statistical schema matching across web
query interfaces. SIGMOD Conference, 2003.

[12] B. He, K. C.-C. Chang, and J. Han. Discovering complex match-
ings across web query interfaces: A correlation mining approach.
In SIGKDD Conference, 2004.

[13] M. A. Hernández, R. J. Miller, and L. M. Haas. Clio: a semi-
automatic tool for schema mapping. SIGMOD Conference, 2001.

[14] J. Kang and J. F. Naughton:. On schema matching with opaque
column names and data values. SIGMOD Conference 2003.

[15] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying heteroge-
neous information sources using source descriptions. In VLDB
Conference, 1996.

[16] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstanti-
nou, J. Ullman, and M. Valiveti. Capability based mediation in
TSIMMIS. SIGMOD Conference, 1998.

[17] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema
matching with cupid. In VLDB 2001.

[18] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. D. Ull-
man. A query translation scheme for rapid implementation of
wrappers. In International Conference on Deductive and Object-
Oriented Databases, 1995.

[19] Y. Papakonstantinou, A. Gupta, and L. Haas. Capabilities-based
query rewriting in mediator systems. In International Conference
on Parallel and Distributed Information Systems, 1996.

[20] A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering queries using
templates with binding patterns. In PODS Conference 1995.

[21] W. Wu, C. T. Yu, A. Doan, and W. Meng. An interactive clustering-
based approach to integrating source query interfaces on the deep
web. SIGMOD Conference, 2004.

[22] Z. Zhang, B. He, and K. C.-C. Chang. Understanding web query
interfaces: Best-effort parsing with hidden syntax. SIGMOD Con-
ference, 2004.

[23] Z. Zhang, B. He, and K. C.-C. Chang. Light-weight
domain-based form assistant: Querying Web Databases On
the Fly, technical report, department of computer science.
http://metaquerier.cs.uiuc.edu, 2005.

108

